33 research outputs found

    Performance assessment of the AquaCrop model to estimate rice yields under alternate wetting and drying irrigation in the coast of Peru

    Get PDF
    Peru is the second-largest rice producer in Latin America, with 406166 ha grown annually, predominately on the Peruvian north coast. However, rice is primarily irrigated by flooding (93%), which demands high water use (15000-18000 m3 ha−1) owing to low water-use efficiency. Additionally, the intensification of climate change is of great concern as it causes high variability as well as a decreasing trend in water resource availability. Alternate wetting and drying (AWD) irrigation technique reportedly reduce the irrigation volumes while maintaining conventional yield rates. The AquaCrop model was calibrated and assessed to simulate rice yield response to the AWD technique under water shortage conditions on the Peruvian central coast. The AquaCrop model exhibited a “very good” to “good” performance in predicting canopy cover development, soil water content, aerial biomass, and grain yield using performance indicators, such as the Nash-Sutcliffe efficiency coefficient, the RMSE observations standard deviation ratio (RSR), Willmott index, and determination coefficient. The calibrated model showed a good performance of rice under AWD irrigation, indicating that this technique can be used to assess rice production under Peruvian arid conditions

    Estimation of rice crop evapotranspiration in Perú based on the METRIC algorithm and UAV images

    Get PDF
    [EN] Modern remote measurement techniques using cameras mounted on an unmanned aerial vehicle (UAV) have made possible to acquire high-resolution images and estimating evapotranspiration at more detailed spatial and temporal scales. The objective of the present research was to estimate crop evapotranspiration (ETc) of rice crop using the “mapping evapotranspiration with internalized calibration model (METRIC)” using high spatial resolution multispectral and thermal images obtained from a UAV. A total of 18 flights with UAV were performed to get the images; likewise, data were collected from the weather station and thermocouple information installed in the crop canopy under soil water potential conditions of –10 kPa (T1), –15 kPa (T2), –20 kPa (T3) and a control of 0 kPa (T0), from November 13, 2017, to April 30, 2018. The results indicate that the METRIC model compared to ETc measurements recorded by a field drainage lysimeter presents a Pearson correlation coefficient (r) of 0.97, root mean square error (RMSE) of 0.51 mm d–1, Nash-Sutcliffe coefficient (EF) of 0.87 and underestimation of 7 %. Evapotranspiration reached values of 7.48 mm d–1, with differences between treatments of 0.2 %, 6 % and 8 % concerning to T0 and yield reduction of 9 %, 34 % and 35 % for T1, T2 and T3 soil water potential. The high[1]resolution images allowed obtaining detailed information on the spatial variability of ETc that could be used in the more efficient application of plot irrigation.[ES] Las modernas técnicas de mediciones remotas con el uso de cámaras (multiespectral y térmica) acopladas a un vehículo aéreo no tripulado (VANT) han permitido adquirir imágenes de alta resolución, haciendo posible estimar la evapotranspiración a una mayor escala espacial y temporal. El objetivo de la presente investigación fue estimar la evapotranspiración del cultivo (ETc) de arroz mediante el modelo METRIC (Mapping evapotranspiration at high resolution with internalized calibration) a partir de imágenes multiespectrales y térmicas de alta resolución espacial obtenidas desde un VANT. Se realizaron 18 vuelos con VANT para obtener las imágenes, así mismo, se recolectaron datos de una estación meteorológica e información de termopares instalados en el dosel del cultivo en condiciones de potencial hídrico del suelo de –10 kPa (T1), –15 kPa (T2), –20 kPa (T3) y un control de 0 kPa (T0), desde el 13 de noviembre del 2017 al 30 de abril del 2018. Los resultados indican que el modelo METRIC, comparado con las medidas de ETc registradas por un lisímetro de drenaje en campo, presenta un coeficiente de correlación de Pearson (r) de 0,97, un error cuadrático medio (RMSE) de 0,51 mm d–1, un coeficiente de Nash-Sutcliffe (EF) de 0,87 y subestimación del 7 %. La evapotranspiración alcanzó valores de 7,48 mm d–1, con diferencias entre tratamientos de 0,2%, 6% y 8% con respecto al T0 y una reducción del rendimiento del 9 %, 34 % y 35 % para T1, T2 y T3 del potencial hídrico del suelo. Las imágenes de alta resolución permitieron obtener información detallada de la variabilidad espacial de ETc que podría ser utilizada en la aplicación más eficiente del riego parcelario.Al Proyecto “Uso de sensores remotos para determinar índice de estrés hídrico en el mejoramiento del manejo de riego de arroz (Oryza sativa) en zonas áridas, para enfrentar al cambio climático”. Convenio N° 008-2016-INIA-PNIA/UPMSI/IE.Quille-Mamani, JA.; Ramos-Fernández, L.; Ontiveros-Capurata, RE. (2021). Estimación de la evapotranspiración del cultivo de arroz en Perú mediante el algoritmo METRIC e imágenes VANT. Revista de Teledetección. 0(58):23-38. https://doi.org/10.4995/raet.2021.13699OJS2338058Abrishamkar, M., Ahmadi, A. 2017. Evapotranspiration Estimation Using Remote Sensing Technology Based on SEBAL Algorithm. Iranian Journal of Science and Technology Transactions of Civil Engineering, 41, 65-76. https://doi.org/10.1007/s40996-016-0036-xAlberto, M.C.R., Wassmann, R., Hirano, T., Miyata, A., Hatano, R., Kumar, A., … Amante, M. 2011. Comparisons of energy balance and evapotranspiration between flooded and aerobic rice fields in the Philippines. Agricultural Water Management, 98(9), 1417-1430. https://doi.org/10.1016/j.agwat.2011.04.011Allen, R., Tasumi, M., Trezza, R., Waters, R. 2002. Bastiaanssen, W. Surface Energy Balance Algorithm for Land (SEBAL)-Advanced Training and Users Manual; Idaho Department of Water Resources, University of Idaho: Moscow, ID, USA.Allen, R., Tasumi, M., Trezza, R. 2007a. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) model. ASCE, Journal of Irrigation and Drainage Engineering, 133, 380-394. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380)Allen, RG., Tasumi, M., Morse, A., Trezza, R., Wright, JL., Bastiaanssen, W., Kramber, W., Lorite, I., Robison, CW. 2007b. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Applications. Journal of Irrigation and Drainage Engineering, 133(4), 395-406. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(395)Allen, R., Trezza, R., Hendrickx, J., Bastiaanssen, W., Kjaersgaard, J. 2011. Satellite-based ET estimation in agriculture using SEBAL and METRIC. Hydrological Processes, 25(26), 4011-4027. https://doi.org/10.1002/hyp.8408Allen, RG., Burnett, B., Kramber, W., Huntington, J., Kjaersgaard, J., Kilic, A., Kelly, C., Trezza, R. 2013. Automated calibration of the METRIC-Landsat evapotranspiration process. Journal of the American Water Resources Association, 49(3), 563-576. https://doi.org/10.1111/jawr.12056Allen, R.G., Wright, J.L. 1997. Translating wind measurements from weather stations to agricultural crops. Journal of Hydrologic Engineering, 2(1), 26-35. https://doi.org/10.1061/(ASCE)1084-0699(1997)2:1(26)Alou, I.N., Steyn, J.M., Annandale, J.G., van der Laan, M. 2018. Growth, phenological, and yield response of upland rice (Oryza sativa L. cv. Nerica 4®) to water stress during different growth stages. Agricultural Water Management, 198, 39-52. https://doi.org/10.1016/j.agwat.2017.12.005Bastiaanssen, W.G.M. 1995. Regionalization of Surface Flux Densities and Moisture Indicators in Composite Terrain: A Remote Sensing Approach Under Clear Skies in Mediterranean Climates. PhD. Dissertation, CIP Data Koninklijke Bibliotheek, Den Haag, the Netherlands, 273 pp. https://doi.org/90-5485-465-0Bastiaanssen, W.G.M.M., Menenti, M., Feddes, R.A., Holtslag, A.A.M. 1998a. A remote sensing surface energy balance algorithm for land (SEBAL) 1. Formulation. Journal of Hydrology 212-213(1- 16), 198-212. https://doi.org/10.1016/S0022-1694(98)00253-4Bastiaanssen, W.G.M., Pelgrum, H., Wang, J., Ma, Y., Moreno, J.F., Roerink, G.J., Van Der Wal, T. 1998b. A remote sensing surface energy balance algorithm for land (SEBAL): 2. Validation. Journal of Hydrology, 212-213(1-4), 213-229. https://doi.org/10.1016/S0022-1694(98)00254-6Bastiaanssen, W.G.M. 2000. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. Journal of Hydrology, 229(1-2), 87-100. https://doi.org/10.1016/S0022-1694(99)00202-4Bhattarai, N., Quackenbush, L.J., Im, J., Shaw, S.B. 2017. A new optimized algorithm for automating endmember pixel selection in the SEBAL and METRIC models. Remote Sensing of Environment, 196, 178- 192. https://doi.org/10.1016/j.rse.2017.05.009Brenner, C., Zeeman, M., Bernhardt, M., Schulz, K., 2018. Estimation of evapotranspiration of temperate grassland based on high-resolution thermal and visible range imagery from unmanned aerial systems. International Journal of Remote Sensing, 39(15-16), 5141-5174. https://doi.org/10.1080/01431161.2018.1471550Cha-Um, S., Yooyongwech, S., Supaibulwatana, K. 2010. Water deficit stress in the reproductive stage of four Indica rice (Oryza sativa L.) genotypes. Journal of Botany, 42(5), 3387-3398.Enciso, J., Jung, J., Chang, A., Chavez, J.C., Yeom, J., Landivar, J., Cavazos, G. 2018. Assessing land leveling needs and performance with unmanned aerial system. Journal of Applied Remote Sensing, 12(1). https://doi.org/10.1117/1.JRS.12.016001Han, L., Yang, G., Dai, H., Xu, B., Yang, H., Feng, H., Li, Z., Yang. X. 2019. Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data. Plant Methods, 15, 10(2019). https://doi.org/10.1186/s13007-019-0394-zHeros, E., Gómez, L., Sosa, G. 2017. Utilización de los índices de selección en la identificación de genotipos de arroz (Oryza sativa L.) tolerantes a sequía. Producción Agropecuaria y Desarrollo Sostenible 2(2), 11-31. https://doi.org/10.5377/payds.v2i0.4326Hilmi, H., Saad, H. 2005. Estimation of Rice Evapotranspiration in Paddy Fields Using Remote Sensing and Field Measurements. Universiti Putra Malaysia, Malaysia.Hoffmann, H., Nieto, H., Jensen, R., Guzinski, R., Zarco-Tejada, P., Friborg, T. 2016. Estimating evaporation with thermal UAV data and two-source energy balance models. Hydrology and Earth System Sciences, 20(2), 697-713. https://doi.org/10.5194/hess-20-697-2016Huete, A.R. 1988. A Soil-Adjusted Vegetation Index (SAVI). Remote Sensing of Environment, 25, 295- 309. https://doi.org/10.1016/0034-4257(88)90106-XKato, Y., Okami, M., Katsura, K. 2009. Yield potential and water use efficiency of aerobic rice (Oryza sativa L.) in Japan. Field Crops Research, 113(3), 328-334. https://doi.org/10.1016/j.fcr.2009.06.010Kiptala, J.K., Mohamed, Y., Mul, M.L., Van Der Zaag, P. 2013. Mapping evapotranspiration trends using MODIS and SEBAL model in a data scarce and heterogeneous landscape in Eastern Africa. Water Resources Research, 49(12), 8495-8510. https://doi.org/10.1002/2013WR014240Kukal, S.S., Hira, G.S., Sidlu, A.S. 2005. Soil matric potential-based irrigation scheduling to rice (Oryza sativa). Irrigation Science, 23(4), 153-159. https://doi.org/10.1007/s00271-005-0103-8Lage, M., Bamouh, A., Karrou, M., El Mourid, M. 2003. Estimation of rice evapotranspiration using a microlysimeter technique and comparison with FAO Penman-Monteith and Pan evaporation methods under Moroccan conditions. Agronomie, EDP Sciences, 23(7), 625-631. https://doi.org/10.1051/agro:2003040Lee, Y., Kim, S. 2016. The Modified SEBAL for Mapping Daily Spatial Evapotranspiration of South Korea Using Three Flux Towers and Terra MODIS Data. Remote Sensing, 8(12), 983. https://doi.org/10.3390/rs8120983Li, G., Jing, Y., Wu, Y., Zhang, F. 2018. Improvement of Two Evapotranspiration Estimation Models Using a Linear Spectral Mixture Model over a Small Agricultural Watershed. Water, 10(4), 474. https://doi.org/10.3390/w10040474Liu, X., Xu, J., Zhou, X., Wang, W., Yang, S. 2019. Evaporative fraction and its application in estimating daily evapotranspiration of water-saving irrigated rice field. Journal of Hydrology, 584, 124317. https://doi.org/10.1016/j.jhydrol.2019.124317Maruyama, A., Kuwagata, T. 2010. Coupling land surface and crop growth models to estimate the effects of changes in the growing season on energy balance and water use of rice paddies. Agricultural and Forest Meteorology, 150(7-8), 919-930. https://doi.org/10.1016/j.agrformet.2010.02.011Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L. 2007. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 50(3), 885-900. https://doi.org/10.13031/2013.23153Morton, C.G., Huntington, J.L., Pohll, G.M., Allen, R.G., Mcgwire, K.C., Bassett, S.D. 2013. Assessing Calibration Uncertainty and Automation for Estimating Evapotranspiration from Agricultural Areas Using METRIC. Journal of the American Water Resources Association, 49(3), 549-562. https://doi.org/10.1111/jawr.12054Nahar, S., Vemireddy, L.R., Sahoo, L., Tanti, B. 2018. Antioxidant Protection Mechanisms Reveal Significant Response in Drought-Induced Oxidative Stress in Some Traditional Rice of Assam, India. Rice Science, 25(4), 185-196. https://doi.org/10.1016/j.rsci.2018.06.002Nassar, A., Torres-Rua, A., Kustas, W., Nieto, H., McKee, M., Hipps, L., Stevens, D., Alfieri, J., Prueger, J., Mar Alsina, M., McKee, L., Coopmans, C., Sanchez, L., Dokoozlian, N. 2020. Influence of Model Grid Size on the Estimation of Surface Fluxes Using the Two Source Energy Balance Model and sUAS Imagery in Vineyards, Remote Sensing, 12(3), 342. https://doi.org/10.3390/rs12030342Norasma, C.Y.N., Abu Sari, M.Y., Fadzilah, M.A., Ismail, M.R., Omar, M.H., Zulkarami, B., Hassim Y.M.M., Tarmidi, Z. 2018. Rice crop monitoring using multirotor UAV and RGB digital camera at early stage of growth. IOP Conference Series: Earth and Environmental Science, 169, 012095. https://doi.org/10.1088/1755-1315/169/1/012095Ortega-Farías, S., Ortega-Salazar, S., Poblete, T., Kilic, A., Allen, R., Poblete-Echeverría, C., Ahumada-Orellana, L., Zuñiga, M., Sepúlveda, D. 2016. Estimation of energy balance components over a drip-irrigated olive orchard using thermal and multispectral cameras placed on a helicopter-based unmanned aerial vehicle (UAV). Remote Sensing, 8(8), 1-18. https://doi.org/10.3390/rs8080638Ramírez-Cuesta, J.M., Allen, R.G., Zarco-Tejada, P.J., Kilic, A., Santos, C., Lorite, I.J. 2019. Impact of the spatial resolution on the energy balance components on an open-canopy olive orchard. International Journal of Applied Earth Observation and Geoinformation, 74, 88-102. https://doi.org/10.1016/j.jag.2018.09.001Rauneker, P., Lischeid, G. 2012. Spatial distribution of water stress and evapotranspiration estimates using an unmanned aerial vehicle (UAV). EGU General Assembly Conference Abstracts, 14, 10477.Sagan, V., Maimaitijiang, M., Sidike, P., Eblimit, K., Peterson, KT., Hartling, S., Esposito, F., Khanal, K., Newcomb, M., Pauli, D., Ward, R., Fritschi, F., Shakoor, N., Mockler, T. 2019. UAV-based high resolution thermal imaging for vegetation monitoring, and plant phenotyping using ICI 8640 P, FLIR Vue Pro R 640, and thermomap cameras. Remote Sensing, 11(3). https://doi.org/10.3390/rs11030330Sandhu, N., Singh, V., Sihag, M.K. 2019. Genomic Footprints Uncovering Abiotic Stress Tolerance in Rice. Advances in Rice Research for Aboitic Stress Tolerance, 737-753. https://doi.org/10.1016/B978-0-12-814332-2.00036-8Tasumi, M. 2003. Progress in operational estimation of regional evapotranspiration using satellite imagery. Ph.D. dissertation, Univ. of Idaho, Moscow, Id.Tucker, C.J., Sellers, P.J. 1986. Satellite remote sensing of primary production. International Journal of Remote Sensing, 7(11), 1395-1416. https://doi.org/10.1080/01431168608948944Tsouni, A., Kontoes, C., Koutsoyiannis, D., Elias, P., Mamassis, N. 2008. Estimation of actual evapotranspiration by remote sensing: Application in Thessaly plain, Greece. Sensors, 8(6), 3586-3600. https://doi.org/10.3390/s8063586Vogt, J. 1990. Cloud Masking for AVHRR. Commission of the European Communities, Joint Research Centre, ISPRA. Special Publication, I.90.33.Wagle, P., Bhattarai, N., Gowda, PH., Kakani, VG. 2017. Performance of five surface energy balance models for estimating daily evapotranspiration in high biomass sorghum. ISPRS Journal of Photogrammetry and Remote Sensing, 128, 192- 203. https://doi.org/10.1016/j.isprsjprs.2017.03.022Weiss, M., Jacob, F., Duveiller, G. 2020. Remote sensing for agricultural applications: A meta-review. Remote Sensing of Environment, 236, 111402. https://doi.org/10.1016/j.rse.2019.111402Xu, J., Liu, X., Yang, S., Qi, Z., Wang, Y. 2017. Modeling rice evapotranspiration under water saving irrigation by calibrating canopy resistance model parameters in the Penman-Monteith equation. Agricultural Water Management, 182, 55-66. https://doi.org/10.1016/j.agwat.2016.12.010Zaman, N.K., Abdullah, M.Y., Othman, S., Zaman, N.K. 2018. Growth and Physiological Performance of Aerobic and Lowland Rice as Affected by Water Stress at Selected Growth Stages. Rice Science, 25(2), 82-93. https://doi.org/10.1016/j.rsci.2018.02.00

    Role of personal aptitudes as determinants of incident morbidity, lifestyles, quality of life, use of health services, and mortality (DESVELA cohort): quantitative study protocol for a prospective cohort study in a hybrid analysis

    Get PDF
    IntroductionThe healthcare and well-being of the population depend on multiple factors and should adapt to societal changes. The opposite is also occurring; society has evolved concerning the individuals’ approach to their care, which includes participation in decision-making processes. In this scenario, health promotion and prevention become crucial to provide an integrated perspective in the organization and management of the health systems.Health status and well-being depend on many aspects, determinants of health, which in turn may be modulated by individual behavior. Certain models and frameworks try to study the determinants of health and individual human behaviors, separately. However, the interrelation between these two aspects has not been examined in our population.Our main objective is to analyze whether personal aptitudes related to behaviors are independently associated with the incidence of morbidity. A secondary objective will enquire whether these personal aptitudes are independently associated with lower all-cause mortality, enhanced adoption of healthy lifestyles, higher quality of life, and lower utilization of health services during follow-up.MethodsThis protocol addresses the quantitative branch of a multicenter project (10 teams) for the creation of a cohort of at least 3,083 persons aged 35 to 74 years from 9 Autonomous Communities (AACC). The personal variables to evaluate are self-efficacy, activation, health literacy, resilience, locus of control, and personality traits. Socio-demographic covariates and social capital will be recorded. A physical examination, blood analysis, and cognitive evaluation will be carried out.Several sets of six Cox models (one for each independent variable) will analyze the incidence of morbidity (objective 1); all-cause mortality and the rest of the dependent variables (objective 2). The models will be adjusted for the indicated covariates, and random effects will estimate Potential heterogeneity between AACC.DiscussionThe analysis of the association of certain behavioral patterns and determinants of health is essential and will contribute to improving health promotion and prevention strategies. The description of the individual elements and interrelated aspects that modulate the onset and persistence of diseases will allow the evaluation of their role as prognostic factors and contribute to the development of patient-tailored preventive measures and healthcare.Clinical Trial Registration: ClinicalTrials.gov, NCT04386135. Registered on April 30, 2020

    Role of personal aptitudes as determinants of incident morbidity, lifestyles, quality of life, use of health services, and mortality (DESVELA cohort): quantitative study protocol for a prospective cohort study in a hybrid analysis

    Get PDF
    IntroductionThe healthcare and well-being of the population depend on multiple factors and should adapt to societal changes. The opposite is also occurring; society has evolved concerning the individuals’ approach to their care, which includes participation in decision-making processes. In this scenario, health promotion and prevention become crucial to provide an integrated perspective in the organization and management of the health systems.Health status and well-being depend on many aspects, determinants of health, which in turn may be modulated by individual behavior. Certain models and frameworks try to study the determinants of health and individual human behaviors, separately. However, the interrelation between these two aspects has not been examined in our population.Our main objective is to analyze whether personal aptitudes related to behaviors are independently associated with the incidence of morbidity. A secondary objective will enquire whether these personal aptitudes are independently associated with lower all-cause mortality, enhanced adoption of healthy lifestyles, higher quality of life, and lower utilization of health services during follow-up.MethodsThis protocol addresses the quantitative branch of a multicenter project (10 teams) for the creation of a cohort of at least 3,083 persons aged 35 to 74 years from 9 Autonomous Communities (AACC). The personal variables to evaluate are self-efficacy, activation, health literacy, resilience, locus of control, and personality traits. Socio-demographic covariates and social capital will be recorded. A physical examination, blood analysis, and cognitive evaluation will be carried out.Several sets of six Cox models (one for each independent variable) will analyze the incidence of morbidity (objective 1); all-cause mortality and the rest of the dependent variables (objective 2). The models will be adjusted for the indicated covariates, and random effects will estimate Potential heterogeneity between AACC.DiscussionThe analysis of the association of certain behavioral patterns and determinants of health is essential and will contribute to improving health promotion and prevention strategies. The description of the individual elements and interrelated aspects that modulate the onset and persistence of diseases will allow the evaluation of their role as prognostic factors and contribute to the development of patient-tailored preventive measures and healthcare.Clinical Trial Registration: ClinicalTrials.gov, NCT04386135. Registered on April 30, 2020

    Taking the pulse of Earth's tropical forests using networks of highly distributed plots

    Get PDF
    Tropical forests are the most diverse and productive ecosystems on Earth. While better understanding of these forests is critical for our collective future, until quite recently efforts to measure and monitor them have been largely disconnected. Networking is essential to discover the answers to questions that transcend borders and the horizons of funding agencies. Here we show how a global community is responding to the challenges of tropical ecosystem research with diverse teams measuring forests tree-by-tree in thousands of long-term plots. We review the major scientific discoveries of this work and show how this process is changing tropical forest science. Our core approach involves linking long-term grassroots initiatives with standardized protocols and data management to generate robust scaled-up results. By connecting tropical researchers and elevating their status, our Social Research Network model recognises the key role of the data originator in scientific discovery. Conceived in 1999 with RAINFOR (South America), our permanent plot networks have been adapted to Africa (AfriTRON) and Southeast Asia (T-FORCES) and widely emulated worldwide. Now these multiple initiatives are integrated via ForestPlots.net cyber-infrastructure, linking colleagues from 54 countries across 24 plot networks. Collectively these are transforming understanding of tropical forests and their biospheric role. Together we have discovered how, where and why forest carbon and biodiversity are responding to climate change, and how they feedback on it. This long-term pan-tropical collaboration has revealed a large long-term carbon sink and its trends, as well as making clear which drivers are most important, which forest processes are affected, where they are changing, what the lags are, and the likely future responses of tropical forests as the climate continues to change. By leveraging a remarkably old technology, plot networks are sparking a very modern revolution in tropical forest science. In the future, humanity can benefit greatly by nurturing the grassroots communities now collectively capable of generating unique, long-term understanding of Earth's most precious forests.Additional co-authors: Susan Laurance, William Laurance, Francoise Yoko Ishida, Andrew Marshall, Catherine Waite, Hannsjoerg Woell, Jean-Francois Bastin, Marijn Bauters, Hans Beeckman, Pfascal Boeckx, Jan Bogaert, Charles De Canniere, Thales de Haulleville, Jean-Louis Doucet, Olivier Hardy, Wannes Hubau, Elizabeth Kearsley, Hans Verbeeck, Jason Vleminckx, Steven W. Brewer, Alfredo Alarcón, Alejandro Araujo-Murakami, Eric Arets, Luzmila Arroyo, Ezequiel Chavez, Todd Fredericksen, René Guillén Villaroel, Gloria Gutierrez Sibauty, Timothy Killeen, Juan Carlos Licona, John Lleigue, Casimiro Mendoza, Samaria Murakami, Alexander Parada Gutierrez, Guido Pardo, Marielos Peña-Claros, Lourens Poorter, Marisol Toledo, Jeanneth Villalobos Cayo, Laura Jessica Viscarra, Vincent Vos, Jorge Ahumada, Everton Almeida, Jarcilene Almeida, Edmar Almeida de Oliveira, Wesley Alves da Cruz, Atila Alves de Oliveira, Fabrício Alvim Carvalho, Flávio Amorim Obermuller, Ana Andrade, Fernanda Antunes Carvalho, Simone Aparecida Vieira, Ana Carla Aquino, Luiz Aragão, Ana Claudia Araújo, Marco Antonio Assis, Jose Ataliba Mantelli Aboin Gomes, Fabrício Baccaro, Plínio Barbosa de Camargo, Paulo Barni, Jorcely Barroso, Luis Carlos Bernacci, Kauane Bordin, Marcelo Brilhante de Medeiros, Igor Broggio, José Luís Camargo, Domingos Cardoso, Maria Antonia Carniello, Andre Luis Casarin Rochelle, Carolina Castilho, Antonio Alberto Jorge Farias Castro, Wendeson Castro, Sabina Cerruto Ribeiro, Flávia Costa, Rodrigo Costa de Oliveira, Italo Coutinho, John Cunha, Lola da Costa, Lucia da Costa Ferreira, Richarlly da Costa Silva, Marta da Graça Zacarias Simbine, Vitor de Andrade Kamimura, Haroldo Cavalcante de Lima, Lia de Oliveira Melo, Luciano de Queiroz, José Romualdo de Sousa Lima, Mário do Espírito Santo, Tomas Domingues, Nayane Cristina dos Santos Prestes, Steffan Eduardo Silva Carneiro, Fernando Elias, Gabriel Eliseu, Thaise Emilio, Camila Laís Farrapo, Letícia Fernandes, Gustavo Ferreira, Joice Ferreira, Leandro Ferreira, Socorro Ferreira, Marcelo Fragomeni Simon, Maria Aparecida Freitas, Queila S. García, Angelo Gilberto Manzatto, Paulo Graça, Frederico Guilherme, Eduardo Hase, Niro Higuchi, Mariana Iguatemy, Reinaldo Imbrozio Barbosa, Margarita Jaramillo, Carlos Joly, Joice Klipel, Iêda Leão do Amaral, Carolina Levis, Antonio S. Lima, Maurício Lima Dan, Aline Lopes, Herison Madeiros, William E. Magnusson, Rubens Manoel dos Santos, Beatriz Marimon, Ben Hur Marimon Junior, Roberta Marotti Martelletti Grillo, Luiz Martinelli, Simone Matias Reis, Salomão Medeiros, Milton Meira-Junior, Thiago Metzker, Paulo Morandi, Natanael Moreira do Nascimento, Magna Moura, Sandra Cristina Müller, Laszlo Nagy, Henrique Nascimento, Marcelo Nascimento, Adriano Nogueira Lima, Raimunda Oliveira de Araújo, Jhonathan Oliveira Silva, Marcelo Pansonato, Gabriel Pavan Sabino, Karla Maria Pedra de Abreu, Pablo José Francisco Pena Rodrigues, Maria Piedade, Domingos Rodrigues, José Roberto Rodrigues Pinto, Carlos Quesada, Eliana Ramos, Rafael Ramos, Priscyla Rodrigues, Thaiane Rodrigues de Sousa, Rafael Salomão, Flávia Santana, Marcos Scaranello, Rodrigo Scarton Bergamin, Juliana Schietti, Jochen Schöngart, Gustavo Schwartz, Natalino Silva, Marcos Silveira, Cristiana Simão Seixas, Marta Simbine, Ana Claudia Souza, Priscila Souza, Rodolfo Souza, Tereza Sposito, Edson Stefani Junior, Julio Daniel do Vale, Ima Célia Guimarães Vieira, Dora Villela, Marcos Vital, Haron Xaud, Katia Zanini, Charles Eugene Zartman, Nur Khalish Hafizhah Ideris, Faizah binti Hj Metali, Kamariah Abu Salim, Muhd Shahruney Saparudin, Rafizah Mat Serudin, Rahayu Sukmaria Sukri, Serge Begne, George Chuyong, Marie Noel Djuikouo, Christelle Gonmadje, Murielle Simo-Droissart, Bonaventure Sonké, Hermann Taedoumg, Lise Zemagho, Sean Thomas, Fidèle Baya, Gustavo Saiz, Javier Silva Espejo, Dexiang Chen, Alan Hamilton, Yide Li, Tushou Luo, Shukui Niu, Han Xu, Zhang Zhou, Esteban Álvarez-Dávila, Juan Carlos Andrés Escobar, Henry Arellano-Peña, Jaime Cabezas Duarte, Jhon Calderón, Lina Maria Corrales Bravo, Borish Cuadrado, Hermes Cuadros, Alvaro Duque, Luisa Fernanda Duque, Sandra Milena Espinosa, Rebeca Franke-Ante, Hernando García, Alejandro Gómez, Roy González-M., Álvaro Idárraga-Piedrahíta, Eliana Jimenez, Rubén Jurado, Wilmar López Oviedo, René López-Camacho, Omar Aurelio Melo Cruz, Irina Mendoza Polo, Edwin Paky, Karen Pérez, Angel Pijachi, Camila Pizano, Adriana Prieto, Laura Ramos, Zorayda Restrepo Correa, James Richardson, Elkin Rodríguez, Gina M. Rodriguez M., Agustín Rudas, Pablo Stevenson, Markéta Chudomelová, Martin Dancak, Radim Hédl, Stanislav Lhota, Martin Svatek, Jacques Mukinzi, Corneille Ewango, Terese Hart, Emmanuel Kasongo Yakusu, Janvier Lisingo, Jean-Remy Makana, Faustin Mbayu, Benjamin Toirambe, John Tshibamba Mukendi, Lars Kvist, Gustav Nebel, Selene Báez, Carlos Céron, Daniel M. Griffith, Juan Ernesto Guevara Andino, David Neill, Walter Palacios, Maria Cristina Peñuela-Mora, Gonzalo Rivas-Torres, Gorky Villa, Sheleme Demissie, Tadesse Gole, Techane Gonfa, Kalle Ruokolainen, Michel Baisie, Fabrice Bénédet, Wemo Betian, Vincent Bezard, Damien Bonal, Jerôme Chave, Vincent Droissart, Sylvie Gourlet-Fleury, Annette Hladik, Nicolas Labrière, Pétrus Naisso, Maxime Réjou-Méchain, Plinio Sist, Lilian Blanc, Benoit Burban, Géraldine Derroire, Aurélie Dourdain, Clement Stahl, Natacha Nssi Bengone, Eric Chezeaux, Fidèle Evouna Ondo, Vincent Medjibe, Vianet Mihindou, Lee White, Heike Culmsee, Cristabel Durán Rangel, Viviana Horna, Florian Wittmann, Stephen Adu-Bredu, Kofi Affum-Baffoe, Ernest Foli, Michael Balinga, Anand Roopsind, James Singh, Raquel Thomas, Roderick Zagt, Indu K. Murthy, Kuswata Kartawinata, Edi Mirmanto, Hari Priyadi, Ismayadi Samsoedin, Terry Sunderland, Ishak Yassir, Francesco Rovero, Barbara Vinceti, Bruno Hérault, Shin-Ichiro Aiba, Kanehiro Kitayama, Armandu Daniels, Darlington Tuagben, John T. Woods, Muhammad Fitriadi, Alexander Karolus, Kho Lip Khoon, Noreen Majalap, Colin Maycock, Reuben Nilus, Sylvester Tan, Almeida Sitoe, Indiana Coronado G., Lucas Ojo, Rafael de Assis, Axel Dalberg Poulsen, Douglas Sheil, Karen Arévalo Pezo, Hans Buttgenbach Verde, Victor Chama Moscoso, Jimmy Cesar Cordova Oroche, Fernando Cornejo Valverde, Massiel Corrales Medina, Nallaret Davila Cardozo, Jano de Rutte Corzo, Jhon del Aguila Pasquel, Gerardo Flores Llampazo, Luis Freitas, Darcy Galiano Cabrera, Roosevelt García Villacorta, Karina Garcia Cabrera, Diego García Soria, Leticia Gatica Saboya, Julio Miguel Grandez Rios, Gabriel Hidalgo Pizango, Eurídice Honorio Coronado, Isau Huamantupa-Chuquimaco, Walter Huaraca Huasco, Yuri Tomas Huillca Aedo, Jose Luis Marcelo Peña, Abel Monteagudo Mendoza, Vanesa Moreano Rodriguez, Percy Núñez Vargas, Sonia Cesarina Palacios Ramos, Nadir Pallqui Camacho, Antonio Peña Cruz, Freddy Ramirez Arevalo, José Reyna Huaymacari, Carlos Reynel Rodriguez, Marcos Antonio Ríos Paredes, Lily Rodriguez Bayona, Rocio del Pilar Rojas Gonzales, Maria Elena Rojas Peña, Norma Salinas Revilla, Yahn Carlos Soto Shareva, Raul Tupayachi Trujillo, Luis Valenzuela Gamarra, Rodolfo Vasquez Martinez, Jim Vega Arenas, Christian Amani, Suspense Averti Ifo, Yannick Bocko, Patrick Boundja, Romeo Ekoungoulou, Mireille Hockemba, Donatien Nzala, Alusine Fofanah, David Taylor, Guillermo Bañares-de Dios, Luis Cayuela, Íñigo Granzow-de la Cerda, Manuel Macía, Juliana Stropp, Maureen Playfair, Verginia Wortel, Toby Gardner, Robert Muscarella, Hari Priyadi, Ervan Rutishauser, Kuo-Jung Chao, Pantaleo Munishi, Olaf Bánki, Frans Bongers, Rene Boot, Gabriella Fredriksson, Jan Reitsma, Hans ter Steege, Tinde van Andel, Peter van de Meer, Peter van der Hout, Mark van Nieuwstadt, Bert van Ulft, Elmar Veenendaal, Ronald Vernimmen, Pieter Zuidema, Joeri Zwerts, Perpetra Akite, Robert Bitariho, Colin Chapman, Eilu Gerald, Miguel Leal, Patrick Mucunguzi, Miguel Alexiades, Timothy R. Baker, Karina Banda, Lindsay Banin, Jos Barlow, Amy Bennett, Erika Berenguer, Nicholas Berry, Neil M. Bird, George A. Blackburn, Francis Brearley, Roel Brienen, David Burslem, Lidiany Carvalho, Percival Cho, Fernanda Coelho, Murray Collins, David Coomes, Aida Cuni-Sanchez, Greta Dargie, Kyle Dexter, Mat Disney, Freddie Draper, Muying Duan, Adriane Esquivel-Muelbert, Robert Ewers, Belen Fadrique, Sophie Fauset, Ted R. Feldpausch, Filipe França, David Galbraith, Martin Gilpin, Emanuel Gloor, John Grace, Keith Hamer, David Harris, Tommaso Jucker, Michelle Kalamandeen, Bente Klitgaard, Aurora Levesley, Simon L. Lewis, Jeremy Lindsell, Gabriela Lopez-Gonzalez, Jon Lovett, Yadvinder Malhi, Toby Marthews, Emma McIntosh, Karina Melgaço, William Milliken, Edward Mitchard, Peter Moonlight, Sam Moore, Alexandra Morel, Julie Peacock, Kelvin Peh, Colin Pendry, R. Toby Pennington, Luciana de Oliveira Pereira, Carlos Peres, Oliver L. Phillips, Georgia Pickavance, Thomas Pugh, Lan Qie, Terhi Riutta, Katherine Roucoux, Casey Ryan, Tiina Sarkinen, Camila Silva Valeria, Dominick Spracklen, Suzanne Stas, Martin Sullivan, Michael Swaine, Joey Talbot, James Taplin, Geertje van der Heijden, Laura Vedovato, Simon Willcock, Mathew Williams, Luciana Alves, Patricia Alvarez Loayza, Gabriel Arellano, Cheryl Asa, Peter Ashton, Gregory Asner, Terry Brncic, Foster Brown, Robyn Burnham, Connie Clark, James Comiskey, Gabriel Damasco, Stuart Davies, Tony Di Fiore, Terry Erwin, William Farfan-Rios, Jefferson Hall, David Kenfack, Thomas Lovejoy, Roberta Martin, Olga Martha Montiel, John Pipoly, Nigel Pitman, John Poulsen, Richard Primack, Miles Silman, Marc Steininger, Varun Swamy, John Terborgh, Duncan Thomas, Peter Umunay, Maria Uriarte, Emilio Vilanova Torre, Ophelia Wang, Kenneth Young, Gerardo A. Aymard C., Lionel Hernández, Rafael Herrera Fernández, Hirma Ramírez-Angulo, Pedro Salcedo, Elio Sanoja, Julio Serrano, Armando Torres-Lezama, Tinh Cong Le, Trai Trong Le, Hieu Dang Tra

    Estudio de la utilidad de la lluvia estimada de satélite en la modelación hidrológica distribuida

    Full text link
    Durante la última década, diversos grupos de investigación se han enfocado en el desarrollo de la tecnología de sensores de satélites y su explotación con el fin de obtener en tiempo real una estimación de la lluvia a escala global. Y es clara la utilidad de estas mediciones, tanto para los modelos de circulación global como para la modelización hidrológica en escalas menores, como sería el caso de cuencas poco o nada instrumentalizadas y con ello, fortalecer la capacidad de gestión de los recursos hídricos, mejorar la predicción del clima y desastres naturales y ofrecer rigor científico que ayude a tomar decisiones informadas. Actualmente, la lluvia estimada por satélite está sujeta a diversos errores debido a problemas instrumentales, naturaleza del sistema de medición, simplificaciones teóricas y relaciones complejas entre las variables observadas y la lluvia, entre otras razones (Nikolopoulos et al., 2010; Semire et al., 2012); esto podría limitar su uso en aplicaciones hidrológicas, por lo que la reducción de este error es clave para su aplicación hidrológica. El objetivo de la tesis es evaluar la utilidad de dos productos de lluvia estimada de satélite, a través de un modelo hidrológico distribuido en una cuenca mediterránea extratropical, como una alternativa de estimación de la precipitación en aquellas regiones donde los pluviómetros convencionales son escasos o inexistentes. La zona de estudio es la cuenca del río Júcar que está localizada al este de la península Ibérica (Valencia, España) con un área drenada de 21,500 km2 , caudal medio de 43 m3 /s, lluvia media de 500 mm y temperatura media de 14º C. El relieve está formado por cadenas de montañas del sistema Ibérico, una meseta continental y una llanura costera; con altitudes máximas de 1770 msnm. Los productos de satélite tienen una resolución temporal diaria y resolución espacial de 0.25º (PERSIANN) y 0.04º (PERSIANN-CCS). Estos productos estiman la lluvia a partir de información de múltiples satélites geosincrónicos (GOES, GMS, MeteoSat) que se actualizan con información de satélites con sensores de microondas pasivos (TRMM, NOAA, DMSP). La información hidrometeorológica con base en tierra (lluvia, caudal, temperatura e información de embalses) ha sido proporcionada por la Agencia Española de Meteorología (AEMET) y el Sistema Automatizado de Información Hidrológica de la Confederación Hidrográfica del río Júcar (SAIH-CHJ) para un período de tiempo del 01 de Enero del 2003 y el 31 de Octubre del 2009. Para caracterizar el error de la lluvia estimada de satélite, se comparó con la lluvia de referencia con base en tierra, a través de herramientas estadísticas que permiten sintetizar el análisis y tener una visión más detallada del error. Así, para cuantificar el grado de dependencia se usó el análisis de correlación con test estadístico de Pearson y Kendall. Además, se obtuvieron: índice de eficiencia de Nash¿Sutcliffe (E), ratio de la raíz del error cuadrático medio y la desviación estándar de las observaciones (RSR), error en volumen (Ev), estadísticos de detección, curva doble masa y técnicas gráficas. Respecto al desempeño del modelo hidrológico, se evaluó a través de índices de eficiencia y técnicas gráficas, en calibración, validación y propagación del error. Los resultados, específicos para la zona de estudio, indican que las correlaciones espaciales entre la lluvia estimada a partir de satélite y la lluvia de referencia, es aceptable a escala anual, menos aceptable a escala mensual, pero pobre a escala diaria. En invierno la correlación diaria es más débil, debido a que las lluvias se concentran más en las zonas montañosas y tal vez, este efecto orográfico no está bien detectado por los satélites. Por el contrario, en verano se observa el patrón opuesto, con correlación positiva significativa, posiblemente por la mayor presencia de días sin lluvia (valor cero). Esto se ve reflejado en valores más altos con el coeficiente de Pearson en verano, ya que la presencia de ceros favorece una mayor correlación; en cambio el coeficiente de Kendall representa mejor estos casos, ya que resiste el efecto de valores extremos (valores mínimos en este caso). También se obtienen errores altos con lluvias máximas y con frecuencia sobrestimación de lluvias ligeras. En general, la lluvia PERSIANN-CCS sobrevalora, mientras que PERSIANN subestima a diferentes escalas de agregación de cuenca. Además, PERSIANN tiene mayor probabilidad de detección de lluvia, pero también de falsas alarmas. La detección de lluvia es menor en la subcuenca del río Albaida (zona costera con lluvias torrenciales y probables SCM en otoño) que en la subcuenca de Pajaroncillo (zona montañosa con lluvias orográficas). Es decir, estas diferencias en la detección por los dos productos de satélite, están siendo influenciadas por las características climáticas y fisiográficas de la zona, que coincide con lo reportado por Hossain y Huffman (2008). El error en volumen (Ev) de la lluvia, para todas las escalas de agregación de cuenca, subestima con PERSIANN y sobrestima con PERSIANN-CCS. Este error tendrá consecuencias en la modelación hidrológica; sin embargo, desde el punto de vista de la modelación, el error se corrige mejor con la sobrestimación que con la subestimación de la lluvia. La cuenca Albaida (1301 km2 ) tienen mejor rendimiento en términos del índice de eficiencia de Nash-Sutcliffe (E) en la estimación de la lluvia con los dos productos de satélite posiblemente por la mayor presencia de lluvias convectivas que el satélite identifica mejor, y que coincide con lo reportado por Ebert et al (2007). En cambio la cuenca más pequeña Pajaroncillo (861 km2 ) tiene mejor rendimiento en Ev pero solo con el producto PERSIANN-CCS. Al respecto, la lluvia orográfica en Pajaroncillo (altitud de 1009 a 1726 msnm) no está siendo bien detectada por el satélite debido a que las montañas emiten una radiación muy variable que dificultan la detección de los satélites con sensores de microondas pasivos, reportado por Levizzani (2008); sin embargo este efecto pareciera que disminuye con una mejor resolución de satélite. La calibración de los parámetros del modelo hidrológico TETIS ha permitido elevar el rendimiento en la modelación. También, diversos autores realizaron una calibración de su modelo hidrológico para mejorar el rendimiento con los productos de lluvia estimada de satélite (Stisen y Sandholt, 2010; Bitew y Gebremichael, 2011b; Bitew et al., 2011; Jiang et al., 2012; Moreno et al., 2012). Es así que, en la modelación hidrológica, se obtienen rendimientos ¿insatisfactorios¿ con PERSIANN, mientras que con PERSIANN-CCS los rendimientos pasan a ser ¿satisfactorios¿. Los resultados son alentadores con lluvia PERSIANN-CCS y tal parece que una mejor resolución de los datos raster de la lluvia, una menor FBIAS y un error de sobrestimación en el volumen de la lluvia, ocasionan que este producto de satélite se adapte mejor en la modelación hidrológica. Similares resultados respecto a productos de satélite con mejor resolución espacial, son reportados por Nikolopoulos et al. (2010) con el producto KIDD (4 km) de mejor resolución espacial, respecto de los productos TRMM-3B42 (0.25º) y KIDD (25 km). Por el contario, en la modelación con lluvia PERSIANN, una resolución espacial grosera de los datos raster de la lluvia y el error de la subestimación en el volumen de la lluvia están afectando negativamente a la modelación, ya que hay insuficiente lluvia que alimente el Ciclo Hidrológico, pero esto posiblemente se esté amortiguando con la mayor probabilidad de detección de la lluvia PERSIANN. Como el modelo hidrológico trata de mantener un comportamiento similar al caudal observado (ya que la estrategia de calibración es una función de este caudal y no de algún componente del balance hídrico), se obtiene que el factor corrector de evapotranspiración se reduce un 71% con PERSIANN e incrementa un 32% con PERSIANN-CCS para finalmente obtener una evapotranspiración que se reduce con PERSIANN e incrementa con PERSIANN-CCS. Un comportamiento similar es reportado en el componente de evapotranspiración con subestimación de lluvia PERSIANN, por Bitew y Gebremichael (2011b) y Moreno et al. (2012). En lo que respecta a la propagación del error de la estimación de la lluvia a la simulación hidrológica, el error en volumen de la lluvia se amortigua a través del proceso de transformación lluvia-escorrentía. Al contrario del error de la lluvia en términos de E y RSR, que empeoran con la modelación hidrológica, excepto en las cuencas más pequeñas como Pajaroncillo (861 km2 ) y Albaida (1,301 km2 ). De cara a mejorar las posibilidades de uso práctico de la lluvia de satélite, se implementó un modelo Bayesiano para combinar información de pluviómetros con lluvia PERSIANN-CCS con diferentes densidades de pluviómetros en la subcuenca montañosa de Pajaroncillo. Los resultados, específicos para la zona de estudio, indican que el valor medio de la lluvia estimada con PERSIANN-CCS mejora a partir de densidades menores a 100 km2 /pluviómetro. Por el contrario, para densidades mayores de 100 km2 /pluviómetro, el valor medio empeora en un rango del 20 al 200%, según aumente la densidad de la red de pluviómetros. Se encontró un comportamiento similar con el resto de estadísticos. Así, es clara una mejora significativa en los estadísticos para una densidad menor a 100 km2 /pluviómetro, con incremento de POD, CSI, PC y HSS, y reducción de FAR. Además, se observa una mejora notable del FBIAS en todas las densidades de pluviómetros, con la excepción de la densidad de 45 km2 /pluviómetro. Los índices de eficiencia de lluvia E, RSR y Ev, se estabilizan a una densidad menor a 100 km2 /pluviómetro. En lo que respecta a la modelación hidrológica utilizando el modelo Bayesiano de combinación de lluvia, se obtienen rendimientos ¿buenos¿ a ¿muy buenos¿ con densidades menores a 100 km2 /pluviómetro, obteniendo el mejor rendimiento para una densidad de 72 km2 /pluviómetro en el que su hidrograma reproduce adecuadamente el flujo base y la forma de la curva de recesión, detecta la mayoría de caudales máximos y días en que ocurren, pero subestima su valor máximo en un 37%. No se debe descartar que esta subestimación podría deberse a que en regiones montañosas, como Pajaroncillo, las estaciones pluviométricas tienden a estar en los valles y con ello subestimar la lluvia orográfica (Ebert et al., 2007; Álvarez, 2011). Respecto a la propagación del error de la lluvia, resulta que el error en volumen de la lluvia se amortigua en todas las densidades de pluviómetro (a excepción con una densidad de 431 km2 /pluviómetro), pero empeora en términos de E y RSR, excepto para densidades menores a 172 km2 /pluviómetro. Como conclusión final se puede decir que el nuevo producto de estimación de lluvia PERSIANN-CCS, además de incrementar su resolución espacial, también mejora en cuanto a su fiabilidad de uso en la modelación hidrológica, especialmente si se combina con datos de pluviómetro, convirtiéndose en el punto de partida de futuras investigaciones.Ramos Fernández, L. (2013). Estudio de la utilidad de la lluvia estimada de satélite en la modelación hidrológica distribuida [Tesis doctoral]. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/27548TESI

    Modelo de programación lineal en el diseño de la red de tuberías y costo del sistema de riego por goteo para determinar la superficie mínima de operación en diferentes cultivos en suelo salino

    No full text
    Drip irrigation needs high investment and it requires using resources optimally, to maximize profits and recover the on investment in the shortest possible time. For this reason, linear programming optimizes the operation of the hydraulic pump in the irrigation head with economical diameters of pipes, depending on the pipe cost and pumping cost. Thus, the aim of this study is to determine minimal operation surface in crops of asparagus, grapes, tomatoes, paprika and onion in saline soil. Twenty-five linear programming models were developed to determine the minimal cost of the system for parcel sizes of 50, 20, 15, 10 and 5 ha. Finally, the economic evaluation was performed to define the minimum operation area according to the evaluated crop. From the results of the study, we obtain an optimal minimum land size of 20 ha for asparagus, 50 ha for vine and 5 ha for tomato, onion and paprika. The onion has the highest yield followed in decreasing order by tomato, paprika, asparagus and vine. According to sensitivity analysis for a reduction of 20 % in crop yield, we found that the onion is profitable at all land sizes, whereas for tomato and paprika it was profitable only in land sizes of 10, 15, 20 and 50 ha. In the case of asparagus and vine, none was profitable.Las altas inversiones que involucra el uso del riego presurizado lleva a emplear óptimamente los recursos, a fin de maximizar los beneficios y recuperar la inversión en el menor tiempo posible. Para esto, la programación lineal permite optimizar el funcionamiento de la bomba hidráulica en el cabezal de riego con los diámetros económicos de tubería correspondientes, en función de los costos de la tubería y del bombeo. Por ello, el objetivo del presente estudio es determinar la superficie mínima de operación con cultivos de espárrago, vid, tomate, páprika y cebolla, en suelo salino. Se desarrollaron 25 modelos de programación lineal para determinar el costo mínimo del sistema en tamaños de parcela de 50, 20, 15, 10 y 5 ha. Finalmente, se realiza la evaluación económica para definir la superficie mínima de operación según el cultivo evaluado. De los resultados del estudio, se obtienen tamaños de parcela mínimos óptimos de 20 ha para espárrago, 50 ha para vid y 5 ha para tomate, cebolla y ají páprika. De los cinco cultivos propuestos, es la cebolla la que presenta la mayor rentabilidad, seguida, en orden decreciente, del tomate, ají páprika, espárrago y vid. Acorde con el análisis de sensibilidad, para una reducción de un 20 % en el rendimiento, se obtiene que la cebolla sigue siendo rentable en todos los tamaños de parcela; en cambio, para el tomate y ají páprika, solo resultaron rentables en tamaños de parcela de 10, 15, 20 y 50 ha. En el caso de los cultivos de espárrago y vid, ninguno resultó rentable

    Caracterización de sedimiento acumulado en alcantarillas. Caso: Ciudad de Santander en España

    No full text
    La necesidad de conocer el comportamiento y la composición físico-química, bacteriológica y metales de los sedimentos depositados en una red de alcantarillado, es esencial para implantar programas de manejo de la red y de todo el sistema de saneamiento de la ciudad debido a que los sedimentos que se encuentran dentro de la red, son los sedimentos que van a ser decantados en las plantas de tratamiento de la ciudad. Por lo anterior, este trabajo de investigación se orienta a caracterizar el sedimento acumulado en una red de alcantarillado unitaria. Se analizó durante un periodo de tres meses con muestreos semanales, la evolución temporal de la composición físico-química, bacteriológica y metales en los sedimentos de dos pozos de registro de la red de alcantarillado de la ciudad de Santander en España. Se obtuvieron valores entre 1325-1770 kg/m3 de densidad, 0.36-1.60 mm de D50, 14894- 25454 mg/kg de DQO, 6269-13878 mg/kg de DBO, 368-902 mg/kg de N, 5-17 mg/kg de P-PO4 -3, 5.5-6.2 log(ufc)/g de CT, 4.5-5.6 log(ufc)/g de CF, 5.1-13.3 mg/kg de Cu, 415-4180 mg/kg de Fe, 58-282 mg/kg de Zn. Los sedimentos están compuestos principalmente de arena, con un 96-98% de DQO y DBO particulada y 82-99% de nitrógeno orgánico. Además, el sedimento es fácilmente biodegradable para el pozo 1 y para la capa superior del pozo 2, y difícilmente biodegradable para la capa inferior del pozo 2. Los mayores valores de D50, DQO, DBO, N, P-PO4 -3, CT y CF se obtuvieron en la capa superior del pozo 2; y los mayores valores de densidad y metales en la capa inferior. La concentración de metales cumple la normativa española de utilización de lodos de depuración en el sector agrario

    Utilidad de la precipitación obtenida por satélite en la modelación hidrología aplicada a la cuenca del río Júcar

    No full text
    The current hydrological models available allaw the simulation of output flow in the basin and also on any part of the basin, but the effectiveness of these models depends on the availability of input data. That is why the satellite-estimated rainfall on global scale adapts to these models, since the data has the rainfall information for the entire basin. However, due to the multidimensionality of error in satellite-estimated rainfall, it’s difficult to establish beforehand a product which allows optimal hydrological application in different weather conditions. For this reason, it’s necessary to evaluate its performance through hydrological modeling. This investigation analyses the usefulness of satellite-estimated rainfall through of a distributed hydrological model. Ground gauge rainfall were used to evaluate the algorithm PERSIANN with spatial resolution of 0,25º and daily resolution for period length from March 01, 2000 to October 31, 2009 in the eastern Iberian Peninsula of Spain. We obtained promising results. The best performance was obtained in calibration of hydrological model with values of 0,384 and 0,499 of the Nash-Sutcliffe index to the output of the sub Pajaroncillo and Sueca.Los actuales modelos hidrológicos distribuidos permiten simular caudales no únicamente en la salida de una cuenca, sino en cualquier parte de la misma, pero la eficacia de estos modelos depende de la disponibilidad de los datos de entrada. Es así que la lluvia estimada de satélite a escala global, se adapta a estos modelos distribuidos ya que se tienen datos de lluvia para toda la cuenca. Sin embargo, debido a la multidimensionalidad del error de la lluvia estimada de satélite, es difícil establecer a priori un producto que permita una óptima aplicación hidrológica en diferentes condiciones climáticas; es por eso que se hace necesario evaluar su desempeño a través de la modelación hidrológica. En este estudio, se evalúa la utilidad de la lluvia estimada por satélite a través de un modelo hidrológico lluvia-escorrentía y se emplea la lluvia estimada por el algoritmo PERSIANN a una resolución temporal diaria y resolución espacial de 0,25º para el periodo comprendido entre el 1° de marzo del 2000 al 31 de octubre del 2009 en la cuenca del río Júcar (España), obteniéndose resultados prometedores. Resulta el mejor rendimiento del modelo en calibración con valores de 0,384 y 0,499 del índice de Nash-Sutcliffe a la salida de las subcuencas Pajaroncillo y Sueca

    Modelación hidrológica distribuida aplicada a la cuenca hidrográfica del río Júcar (España)

    No full text
    La lluvia en la cuenca del Júcar es un proceso complejo asociado a un grado de incertidumbre que se caracteriza por su enorme variabilidad temporal y espacial. En verano, encontramos lluvias intensas de corta duración, con picos aislados de valor muy alto, originadas por sistemas convectivos de mesoescala SCM típicos del Mediterráneo; en invierno, los valores más altos se concentran en la parte alta de la cuenca, originados por la cadena de montañas del sistema ibérico. Ante esto, el objetivo del presente trabajo es obtener la respuesta hidrológica ocasionada por episodios de lluvia, teniendo en cuenta los diferentes procesos físicos involucrados y empleando la modelación distribuida, aplicándola a la cuenca del río Júcar, para un periodo de análisis que abarca del 1° de enero del 2000 al 31 de octubre del 2009. La información obtenida del estudio de la modelación hidrológica tuvo óptimos resultados con índices de Nash-Sutcliffe de 0,87 (calibración), 0,81 (validación temporal) y 0,51-0,62 (validación espacio-temporal) y por tanto podría proporcionar información que serviría de ayuda en diversas aplicaciones hidrológicas, gestión del agua y del medio ambiente en la cuenca del río Júcar. Con ello, se fortalecería la capacidad de gestión de los recursos hídricos, se mejoraría la predicción del clima y los desastres naturales y se ofrecería rigor científico para ayudar a tomar decisiones informadas
    corecore