247 research outputs found

    Mitochondrial dysfunction promoted by Porphyromonas gingivalis lipopolysaccharide as a possible link between cardiovascular disease and periodontitis

    Get PDF
    Oxidative stress is one of the factors that could explain the pathophysiological mechanism of inflammatory conditions that occur in cardiovascular disease (CVD) and periodontitis. Such inflammatory response is often evoked by specific bacteria, as the lipopolysaccharide (LPS) of Porphyromonas gingivalis is a key factor in this process. The aim of this research was to study the role of mitochondrial dysfunction in peripheral blood mononuclear cells (PBMCs) from periodontitis patients and to evaluate the influence of LPS on fibroblasts to better understand the pathophysiology of periodontitis and its relationship with CVD. PBMCs from patients showed lower CoQ10 levels and citrate synthase activity, together with high levels of ROS production. LPS-treated fibroblasts provoked increased oxidative stress and mitochondrial dysfunction by a decrease in mitochondrial protein expression, mitochondrial mass, and mitochondrial membrane potential. Our study supports the hypothesis that LPS-mediated mitochondrial dysfunction could be at the origin of oxidative stress in periodontal patients. Abnormal PBMC performance may promote oxidative stress and alter cytokine homeostasis. In conclusion, mitochondrial dysfunction could represent a possible link to understanding the interrelationships between two prominent inflammatory diseases: periodontitis and CV

    Metabolic Syndrome and Periodontitis: Is Oxidative Stress a Common Link?

    Get PDF
    Ponencia basada en este artículo en la 2nd International Mediterranean Meeting - Nutrition and Metabolism, Granada, 2010A review of pathological mechanisms that can explain the relationship between periodontitis and cardiovascular disease (CVD) is necessary to improve the management of both conditions. Metabolic syndrome is a combination of obesity, hypertension, impaired glucose tolerance or diabetes, hyperinsulinemia, and dyslipidemia. All these have been examined in recent years in terms of their relationship to periodontitis. Reviewed data indicate an association between some of them (body mass index, high-density lipoprotein-cholesterol [HDL-C], triglycerides, high blood pressure, among others) and periodontitis. Oxidative stress may act as a potential common link to explain relationships between each component of metabolic síndrome and periodontitis. Both conditions show increased serum levels of products derived from oxidative damage, with a pro-inflammatory state likely influencing each other bidirectionally. Adipocytokines might modulate the oxidant/anti-oxidant balance in this relationship

    Anthocyanin-rich extract decreases indices of lipid peroxidation and DNA damage in vitamin E-depleted rats

    Get PDF
    Anthocyanins are secondary plant metabolites responsible for the blue, purple, and red color of many plant tissues. The phenolic structure of anthocyanins conveys marked antioxidant activity in model systems via donation of electrons or hydrogen atoms from hydroxyl moieties to free radicals. Dietary intakes of anthocyanins may exceed 200 mg/day, however, little is known about their antioxidant potency in vivo. Consequently, the aim of this study was to establish whether anthocyanins could act as putative antioxidant micronutrients. Rats were maintained on vitamin E-deficient diets for 12 weeks in order to enhance susceptibility to oxidative damage and then repleted with rations containing a highly purified anthocyanin-rich extract at a concentration of 1 g/kg diet. The extract consisted of the 3-glucopyranoside forms of delphinidin, cyanidin, petunidin, peonidin, and malvidin. Consumption of the anthocyanin repleted diet significantly improved (p < 0.01) plasma antioxidant capacity and decreased (p < 0.001) the vitamin E deficiency-enhanced hydroperoxides and 8-Oxo-deoxyguanosine concentrations in liver. These compounds are indices of lipid peroxidation and DNA damage, respectively. Dietary consumption of anthocyanin-rich foods may contribute to overall antioxidant status, particularly in areas of habitually low vitamin E intake.Fundação para Ciência e Tecnologi

    Transcriptional Shift Identifies a Set of Genes Driving Breast Cancer Chemoresistance

    Get PDF
    Background Distant recurrences after antineoplastic treatment remain a serious problem for breast cancer clinical management, which threats patients’ life. Systemic therapy is administered to eradicate cancer cells from the organism, both at the site of the primary tumor and at any other potential location. Despite this intervention, a significant proportion of breast cancer patients relapse even many years after their primary tumor has been successfully treated according to current clinical standards, evidencing the existence of a chemoresistant cell subpopulation originating from the primary tumor.Methods/Findings To identify key molecules and signaling pathways which drive breast cancer chemoresistance we performed gene expression analysis before and after anthracycline and taxane-based chemotherapy and compared the results between different histopathological response groups (good-, mid- and bad-response), established according to the Miller & Payne grading system. Two cohorts of 33 and 73 breast cancer patients receiving neoadjuvant chemotherapy were recruited for whole-genome expression analysis and validation assay, respectively. Identified genes were subjected to a bioinformatic analysis in order to ascertain the molecular function of the proteins they encode and the signaling in which they participate. High throughput technologies identified 65 gene sequences which were over-expressed in all groups (P ≤ 0·05 Bonferroni test). Notably we found that, after chemotherapy, a significant proportion of these genes were over-expressed in the good responders group, making their tumors indistinguishable from those of the bad responders in their expression profile (P ≤ 0.05 Benjamini-Hochgerg`s method).Conclusions These data identify a set of key molecular pathways selectively up-regulated in post-chemotherapy cancer cells, which may become appropriate targets for the development of future directed therapies against breast cancer.Thanks are due to the Consejería de Economia, Innovación y Ciencia (CEIC) from the Junta de Andalucía and Fondo Europeo de Desarrollo Regional (FEDER)/Fondo de Cohesión Europeo (FSE) to financial support through the Programa Operativo FEDER/FSE de Andalucía 2007-2013 and the research project CTS-5350. The authors also acknowledge financial support by the PN de I+D+i 2006-2009/ISCIII/Ministerio de Sanidad, Servicios Sociales e Igualdad (Spain) and Fondo Europeo de Desarrollo Regional (FEDER) from the European Union, through the research project PI06/90388

    Dietary Protection Against Free Radicals: A Case for Multiple Testing to Establish Structure-activity Relationships for Antioxidant Potential of Anthocyanic Plant Species

    Get PDF
    DNA damage by reactive species is associated with susceptibility to chronic human degenerative disorders. Anthocyanins are naturally occurring antioxidants, that may prevent or reverse such damage. There is considerable interest in anthocyanic food plants as good dietary sources, with the potential for reducing susceptibility to chronic disease. While structure-activity relationships have provided guidelines on molecular structure in relation to free hydroxyl-radical scavenging, this may not cover the situation in food plants where the anthocyanins are part of a complex mixture, and may be part of complex structures, including anthocyanic vacuolar inclusions (AVIs). Additionally, new analytical methods have revealed new structures in previously-studied materials. We have compared the antioxidant activities of extracts from six anthocyanin-rich edible plants (red cabbage, red lettuce, blueberries, pansies, purple sweetpotato skin, purple sweetpotato flesh and Maori potato flesh) using three chemical assays (DPPH, TRAP and ORAC), and the in vitro Comet assay. Extracts from the flowering plant, lisianthus, were used for comparison. The extracts showed differential effects in the chemical assays, suggesting that closely related structures have different affinities to scavenge different reactive species. Integration of anthocyanins to an AVI led to more sustained radical scavenging activity as compared with the free anthocyanin. All but the red lettuce extract could reduce endogenous DNA damage in HT-29 colon cancer cells. However, while extracts from purple sweetpotato skin and flesh, Maori potato and pansies, protected cells against subsequent challenge by hydrogen peroxide at 0°C, red cabbage extracts were pro-oxidant, while other extracts had no effect. When the peroxide challenge was at 37°C, all of the extracts appeared pro-oxidant. Maori potato extract, consistently the weakest antioxidant in all the chemical assays, was more effective in the Comet assays. These results highlight the dangers of generalising to potential health benefits, based solely on identification of high anthocyanic content in plants, results of a single antioxidant assay and traditional approaches to structure activity relationships. Subsequent studies might usefully consider complex mixtures and a battery of assays

    Autophagy in periodontitis patients and gingival fibroblasts: unraveling the link between chronic diseases and inflammation

    Get PDF
    Authors are indebted with Ms Monica Glebocki for extensive editing of the manuscriptBackground: Periodontitis, the most prevalent chronic inflammatory disease, has been related to cardiovascular diseases. Autophagy provides a mechanism for the turnover of cellular organelles and proteins through a lysosome-dependent degradation pathway. The aim of this research was to study the role of autophagy in peripheral blood mononuclear cells from patients with periodontitis and gingival fibroblasts treated with a lipopolysaccharide of Porphyromonas gingivalis. Autophagy-dependent mechanisms have been proposed in the pathogenesis of inflammatory disorders and in other diseases related to periodontitis, such as cardiovascular disease and diabetes. Thus it is important to study the role of autophagy in the pathophysiology of periodontitis. Methods: Peripheral blood mononuclear cells from patients with periodontitis (n = 38) and without periodontitis (n = 20) were used to study autophagy. To investigate the mechanism of autophagy, we evaluated the influence of a lipopolysaccharide from P. gingivalis in human gingival fibroblasts, and autophagy was monitored morphologically and biochemically. Autophagosomes were observed by immunofluorescence and electron microscopy. Results: We found increased levels of autophagy gene expression and high levels of mitochondrial reactive oxygen species production in peripheral blood mononuclear cells from patients with periodontitis compared with controls. A significantly positive correlation between both was observed. In human gingival fibroblasts treated with lipopolysaccharide from P. gingivalis, there was an increase of protein and transcript of autophagy-related protein 12 (ATG12) and microtubule-associated protein 1 light chain 3 alpha LC3. A reduction of mitochondrial reactive oxygen species induced a decrease in autophagy whereas inhibition of autophagy in infected cells increased apoptosis, showing the protective role of autophagy. Conclusion: Results from the present study suggest that autophagy is an important and shared mechanism in other conditions related to inflammation or alterations of the immune system, such as periodontiti

    Diets based on virgin olive oil or fish oil but not on sunflower oil prevent age-related alvolar bone resorption by mitochondrial-related mechanisms

    Get PDF
    Background/Objectives: Aging enhances frequency of chronic diseases like cardiovascular diseases or periodontitis. Here we reproduced an age-dependent model of the periodontium, a fully physiological approach to periodontal conditions, to evaluate the impact of dietary fat type on gingival tissue of young (6 months old) and old (24 months old) rats.Methods/Findings: Animals were fed life-long on diets based on monounsaturated fatty acids (MUFA) as virgin olive oil, n-6 polyunsaturated fatty acids (n-6PUFA), as sunflower oil, or n-3PUFA, as fish oil. Age-related alveolar bone loss was higher in n-6PUFA fed rats, probably as a consequence of the ablation of the cell capacity to adapt to aging. Gene expression analysis suggests that MUFA or n-3PUFA allowed mitochondria to maintain an adequate turnover through induction of biogenesis, autophagy and the antioxidant systems, and avoiding mitochondrial electron transport system alterations.Conclusions: The main finding is that the enhanced alveolar bone loss associated to age may be targeted by an appropriate dietary treatment. The mechanisms involved in this phenomenon are related with an ablation of the cell capacity to adapt to aging. Thus, MUFA or n-3PUFA might allow mitochondrial maintaining turnover through biogenesis or autophagy. They might also be able to induce the corresponding antioxidant systems to counteract age-related oxidative stress, and do not inhibit mitochondrial electron transport chain. From the nutritional and clinical point of view, it is noteworthy that the potential treatments to attenuate alveolar bone loss (a feature of periodontal disease) associated to age could be similar to some of the proposed for the prevention and treatment of cardiovascular diseases, a group of pathologies recently associated with age-related periodontitis.This study was supported by I+D grants from the Spanish Ministry of Education and Science (AGL2008-01057) and the Autonomous Government of Andalusia (AGR832)
    corecore