1,065 research outputs found

    Lattice-gas Monte Carlo study of adsorption in pores

    Get PDF
    A lattice gas model of adsorption inside cylindrical pores is evaluated with Monte Carlo simulations. The model incorporates two kinds of site: (a line of) ``axial'' sites and surrounding ``cylindrical shell'' sites, in ratio 1:7. The adsorption isotherms are calculated in either the grand canonical or canonical ensembles. At low temperature, there occur quasi-transitions that would be genuine thermodynamic transitions in mean-field theory. Comparison between the exact and mean-field theory results for the heat capacity and adsorption isotherms are provided

    Berry phase for ferromagnet with fractional spin

    Full text link
    We study the double exchange model on two lattice sites with one conduction electron in the limit of an infinite Hund's interaction. While this simple problem is exactly solvable, we present an approximate solution which is valid in the limit of large core spins. This solution is obtained by integrating out charge degrees of freedom. The effective action of two core spins obtained in the result of such an integration resembles the action of two fractional spins. We show that the action obtained via naive gradient expansion is inconsistent. However, a ``non-perturbative'' treatment leads to an extra term in the effective action which fixes this inconsistency. The obtained ``Berry phase term'' is geometric in nature. It arises from a geometric constraint on a target space imposed by an adiabatic approximation.Comment: 11 pages, 3 figures, revtex

    Monte Carlo Simulations for the Magnetic Phase Diagram of the Double Exchange Hamiltonian

    Full text link
    We have used Monte Carlo simulation techniques to obtain the magnetic phase diagram of the double exchange Hamiltonian. We have found that the Berry's phase of the hopping amplitude has a negligible effect in the value of the magnetic critical temperature. To avoid finite size problems in our simulations we have also developed an approximated expression for the double exchange energy. This allows us to obtain the critical temperature for the ferromagnetic to paramagnetic transition more accurately. In our calculations we do not observe any strange behavior in the kinetic energy, chemical potential or electron density of states near the magnetic critical temperature. Therefore, we conclude that other effects, not included in the double exchange Hamiltonian, are needed to understand the metal-insulator transition which occurs in the manganites.Comment: 6 pages Revtex, 8 PS figure

    Effects of site dilution on the magnetic properties of geometrically frustrated antiferromagnets

    Full text link
    The effect of site dilution by non magnetic impurities on the susceptibility of geometrically frustrated antiferromagnets (kagome and pyrochlore lattices) is discussed in the framework of the Generalized Constant Coupling model, for both classical and quantum Heisenberg spins. For the classical diluted pyrochlore lattice, excellent agreement is found when compared with Monte Carlo data. Results for the quantum case are also presented and discussed.Comment: 5 pages, 3 figure

    Estimating outflow masses and velocities in merger simulations:Impact of <i>r</i>-process heating and neutrino cooling

    Get PDF
    The determination of the mass, composition, and geometry of matter outflows in black hole-neutron star and neutron star-neutron star binaries is crucial to current efforts to model kilonovae, and to understand the role of neutron star merger in r-process nucleosynthesis. In this manuscript, we review the simple criteria currently used in merger simulations to determine whether matter is unbound and what the asymptotic velocity of ejected material will be. We then show that properly accounting for both heating and cooling during r-process nucleosynthesis is important to accurately predict the mass and kinetic energy of the outflows. These processes are also likely to be crucial to predict the fallback timescale of any bound ejecta. We derive a model for the asymptotic veloicity of unbound matter and binding energy of bound matter that accounts for both of these effects and that can easily be implemented in merger simulations. We show, however, that the detailed velocity distribution and geometry of the outflows can currently only be captured by full 3D fluid simulations of the outflows, as non-local effect ignored by the simple criteria used in merger simulations cannot be safely neglected when modeling these effects. Finally, we propose the introduction of simple source terms in the fluid equations to approximately account for heating/cooling from r-process nucleosynthesis in future seconds-long 3D simulations of merger remnants, without the explicit inclusion of out-of-nuclear statistical equilibrium reactions in the simulations.Comment: Accepted by Phys.Rev.

    Novel order parameter to describe the critical behavior of Ising spin glass models

    Full text link
    A novel order parameter Φ\Phi for spin glasses is defined based on topological criteria and with a clear physical interpretation. Φ\Phi is first investigated for well known magnetic systems and then applied to the Edwards-Anderson ±J\pm J model on a square lattice, comparing its properties with the usual qq order parameter. Finite size scaling procedures are performed. Results and analyses based on Φ\Phi confirm a zero temperature phase transition and allow to identify the low temperature phase. The advantages of Φ\Phi are brought out and its physical meaning is established.Comment: 13 pages, 4 figures, to appear in Physica

    Soldagem Por Atrito Com Pino Não Consumível De Aços Inoxidáveis Duplexa

    Get PDF
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Duplex stainless steels are successful in a variety of applications such as the food industry, petrochemical and plants for desalination of seawater, where high corrosion resistance and high mechanical strength are required. However, the beneficial microstructure may be change during fusion welding steps and it can compromise the performance of these materials. Friction stir welding is a solid state process avoiding typical problems concerning solidification such as solidification cracks, liquation and segregation of alloying elements. For superduplex stainless steels can avoid unbalanced proportions of ferrite and austenite, formation of secondary deleterious phases and grain growth of ferrite in the heat affected zone. Consolidated friction stir welded joints with full penetration of 6 mm thick were obtained for UNS S32101 and S32205 duplex and S32750 and S32760 superduplex stainless steels. The friction stir welds were submitted to tensile tests indicating an improvement of strength in welded joints showing increased of yield and tensile strength for all studied cases. Regarding the microstructural characterization, an outstanding gran refinement was observed in the welded joint achieving grain sizes as small as 1 μm. This refinement was associated with the combination of microstructural restoration mechanisms in the dual phase microstructure promoted by severe deformation associated with a high temperature during the welding process. © 2016, Universidade Federal de Uberlandia. All rights reserved.2115969CNPq, Conselho Nacional de Desenvolvimento Científico e TecnológicoFAPESP, Fundação de Amparo à Pesquisa do Estado de São PauloConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Conductance as a Function of the Temperature in the Double Exchange Model

    Full text link
    We have used the Kubo formula to calculate the temperature dependence of the electrical conductance of the double exchange Hamiltonian. We average the conductance over an statistical ensemble of clusters, which are obtained by performing Monte Carlo simulations on the classical spin orientation of the double exchange Hamiltonian. We find that for electron concentrations bigger than 0.1, the system is metallic at all temperatures. In particular it is not observed any change in the temperature dependence of the resistivity near the magnetical critical temperature. The calculated resistivity near TcT_c is around ten times smaller than the experimental value. We conclude that the double exchange model is not able to explain the metal to insulator transition which experimentally occurs at temperatures near the magnetic critical temperature.Comment: 6 pages, 5 figures included in the tex

    Monte Carlo simulation of metal deposition on foreign substrates

    Full text link
    The deposition of a metal on a foreign substrate is studied by means of grand canonical Monte Carlo simulations and a lattice-gas model with pair potential interactions between nearest neighbors. The influence of temperature and surface defects on adsorption isotherms and differential heat of adsorption is considered. The general trends can be explained in terms of the relative interactions between adsorbate atoms and substrate atoms. The systems Ag/Au(100), Ag/Pt(100), Au/Ag(100) and Pt/Ag(100) are analyzed as examples.Comment: 26 pages, 9 figure
    • …
    corecore