227 research outputs found

    IoT Networks: Using Machine Learning Algorithm for Service Denial Detection in Constrained Application Protocol

    Get PDF
    The paper discusses the potential threat of Denial of Service (DoS) attacks in the Internet of Things (IoT) networks on constrained application protocols (CoAP). As billions of IoT devices are expected to be connected to the internet in the coming years, the security of these devices is vulnerable to attacks, disrupting their functioning. This research aims to tackle this issue by applying mixed methods of qualitative and quantitative for feature selection, extraction, and cluster algorithms to detect DoS attacks in the Constrained Application Protocol (CoAP) using the Machine Learning Algorithm (MLA). The main objective of the research is to enhance the security scheme for CoAP in the IoT environment by analyzing the nature of DoS attacks and identifying a new set of features for detecting them in the IoT network environment. The aim is to demonstrate the effectiveness of the MLA in detecting DoS attacks and compare it with conventional intrusion detection systems for securing the CoAP in the IoT environment. Findings The research identifies the appropriate node to detect DoS attacks in the IoT network environment and demonstrates how to detect the attacks through the MLA. The accuracy detection in both classification and network simulation environments shows that the k-means algorithm scored the highest percentage in the training and testing of the evaluation. The network simulation platform also achieved the highest percentage of 99.93% in overall accuracy. This work reviews conventional intrusion detection systems for securing the CoAP in the IoT environment. The DoS security issues associated with the CoAP are discussed

    Relationship between Rheological Behaviour and Final Structure of Al

    Get PDF
    Using rheological parameters of ceramic suspensions, it is possible to taylor the structure of the ceramic foams produced by replica. This method consists in the impregnation of a polymeric flexible template (polyurethane foam) with a ceramic suspension (slurry) containing the appropriate additives, followed by burning out organic compounds and additives and sintering the ceramic structure. In this work, ceramic foams were produced by the replica method from Al2O3 and 3% Y2O3-ZrO2. Rheological parameters of the ceramic suspensions were investigated to improve the mechanical performance of final structures. Different types and quantities of raw materials were combined in order to select the formulations for ceramic foams. The parameters that have a significant influence on the process are the binder type and the amount of solids. Significant changes on the hysteresis area of the suspensions resulted in a lower density of macrodefects in the material. Likewise, when the shear rate viscosity is enhanced, the thickness of the struts increased proportionally. Lastly, when the hysteresis area magnitude and the ceramic thickness increased, the material with higher uniformity was internally densified, and the stress concentration of the internal defects was smoothe

    Upgrade of the Glasgow photon tagging spectrometer for Mainz MAMI-C

    Full text link
    The Glasgow photon tagging spectrometer at Mainz has been upgraded so that it can be used with the 1500 MeV electron beam now available from the Mainz microtron MAMI-C. The changes made and the resulting properties of the spectrometer are discussed.Comment: 20 pages, 12 figure

    Photoproduction of pi0-mesons from nuclei

    Full text link
    Photoproduction of neutral pions from nuclei (carbon, calcium, niobium, lead) has been studied for incident photon energies from 200 MeV to 800 MeV with the TAPS detector using the Glasgow photon tagging spectrometer at the Mainz MAMI accelerator. Data were obtained for the inclusive photoproduction of neutral pions and the partial channels of quasifree single pi0, double pi0, and pi0pi+/- photoproduction. They have been analyzed in terms of the in-medium behavior of nucleon resonances and the pion - nucleus interaction. They are compared to earlier measurements from the deuteron and to the predictions of a Boltzmann-Uehling-Uhlenbeck (BUU) transport model for photon induced pion production from nuclei.Comment: 15 pages, 22 figures, accepted for publication in EPJ

    Markedly Divergent Tree Assemblage Responses to Tropical Forest Loss and Fragmentation across a Strong Seasonality Gradient

    Get PDF
    We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide

    Ultrashort filaments of light in weakly-ionized, optically-transparent media

    Get PDF
    Modern laser sources nowadays deliver ultrashort light pulses reaching few cycles in duration, high energies beyond the Joule level and peak powers exceeding several terawatt (TW). When such pulses propagate through optically-transparent media, they first self-focus in space and grow in intensity, until they generate a tenuous plasma by photo-ionization. For free electron densities and beam intensities below their breakdown limits, these pulses evolve as self-guided objects, resulting from successive equilibria between the Kerr focusing process, the chromatic dispersion of the medium, and the defocusing action of the electron plasma. Discovered one decade ago, this self-channeling mechanism reveals a new physics, widely extending the frontiers of nonlinear optics. Implications include long-distance propagation of TW beams in the atmosphere, supercontinuum emission, pulse shortening as well as high-order harmonic generation. This review presents the landmarks of the 10-odd-year progress in this field. Particular emphasis is laid to the theoretical modeling of the propagation equations, whose physical ingredients are discussed from numerical simulations. Differences between femtosecond pulses propagating in gaseous or condensed materials are underlined. Attention is also paid to the multifilamentation instability of broad, powerful beams, breaking up the energy distribution into small-scale cells along the optical path. The robustness of the resulting filaments in adverse weathers, their large conical emission exploited for multipollutant remote sensing, nonlinear spectroscopy, and the possibility to guide electric discharges in air are finally addressed on the basis of experimental results.Comment: 50 pages, 38 figure

    Creating a positive casual academic identity through change and loss

    Get PDF
    Neoliberalism has significantly impacted higher education institutes across the globe by increasing the number of casual and non-continuing academic positions. Insecure employments conditions have not only affected the well-being of contingent staff, but it has also weakened the democratic, intellectual and moral standing of academic institutions. This chapter provides one practitioner’s account of the challenges of casual work, but rather than dwelling on the negativities, it outlines the potential richness of an identity based on insecurity and uncertainty. This exploration draws on the literature of retired academics and identity theory to illustrate the potential generative spaces within an undefined and incoherent identity
    corecore