35 research outputs found

    Maghemite-like regions at crossing of two antiphase boundaries in doped BiFeO3

    Get PDF
    We report the observation of a novel structure at the point where two antiphase boundaries cross in a doped bismuth ferrite of composition (Bi0.85Nd0.15)(Fe0.9Ti0.1)O0.3. The structure was investigated using a combination of high angle annular dark field imaging and electron energy loss spectroscopy spectrum imaging in the scanning transmission electron microscope. A three-dimensional model was constructed by combining the position and chemistry data with previous results and assuming octahedral coordination of all Fe and Ti atoms. The resulting structure shows some novel L shaped arrangements of iron columns, which are coordinated in a similar manner to FeO6 octahedra in maghemite. It is suggested that this may lead to local ferromagnetic orderings similar to those in maghemite

    Novel nanorod precipitate formation in neodymium and titanium codoped bismuth ferrite

    Get PDF
    The discovery of unusual nanorod precipitates in bismuth ferrite doped with Nd and Ti is reported. The atomic structure and chemistry of the nanorods are determined using a combination of high angle annular dark field imaging, electron energy loss spectroscopy, and density functional calculations. It is found that the structure of the BiFeO3 matrix is strongly modified adjacent to the precipitates; the readiness of BiFeO3 to adopt different structural allotropes in turn explains why such a large axial ratio, uncommon in precipitates, is stabilized. In addition, a correlation is found between the alignment of the rods and the orientation of ferroelastic domains in the matrix, which is consistent with the system's attempt to minimize its internal strain. Density functional calculations indicate a finite density of electronic states at the Fermi energy within the rods, suggesting enhanced electrical conductivity along the rod axes, and motivating future investigations of nanorod functionalities

    Grain-Boundary Structural Relaxation in Sb2Se3{\mathrm{Sb}}_{2}{\mathrm{Se}}_{3} Thin-Film Photovoltaics

    Get PDF
    Grain boundaries play an important role in the efficiency of thin-film photovoltaics, where the absorber layer is invariably polycrystalline. Density-functional-theory simulations have previously identified a “self-healing” mechanism in Sb2Se3 that passivates the grain boundaries. During “self-healing,” extensive structural relaxation at the grain boundary removes the band-gap electronic defect states that give rise to high carrier recombination rates. In this work, lattice imaging in a transmission electron microscope is used to uncover evidence for the theoretically proposed structural relaxation in Sb2Se3. The strain measured along the [010] crystal direction is found to be dependent on the nature of the grain-boundary plane. For a (010) grain boundary, the strain and structural relaxation is minimal, since no covalent bonds are broken by termination of the grain. On the other hand, strains of up to approximately 4% extending approximately 2 nm into the grain interior are observed for a (041) grain boundary, where grain termination results in significant structural relaxation due to the ideal atomic coordination being disrupted. These results are consistent with theory and suggest that Sb2Se3 may have a high level of grain-boundary-defect tolerance

    The effect of substrate clamping on the paraelectric to antiferroelectric phase transition in Nd-doped BiFeO₃ thin films

    Get PDF
    Thin films were deposited on Pt/Ti/SiO₂/Si substrates using pulsed laser deposition from a target with a composition (Bi₀.₈₂₅Nd₀.₁₇₅Fe₀.₉₇Ti₀.₀₃O₃) with 5 mol% excess Bi₂O₃ within the antiferroelectric (AFE) region of the NdFeO₃-BiFeO₃ phase diagram. However, Raman spectroscopy and transmission electron microscopy (TEM) revealed that films consisted of a mosaic microstructure in which (AFE), ferroelectric (FE) and paraelectric (PE) phases coexisted. Variation in the spatial distribution of Nd is typically greater in bulk ceramics than in thin films and therefore, the absence of single phase AFE cannot be attributed to local changes in composition. Instead, it is proposed that clamping due to mismatch in thermal expansion coefficient with the substrate suppresses the large volume change associated with the PE-FE and PE-AFE transition in bulk and its absence in the thin film prevents an avalanche-like transition throughout grains, which in bulk sustains single phase AFE, irrespective of local deviations in the Nd concentration

    Interface ferromagnetism and orbital reconstruction in BiFeO3- La0.7Sr0.3MnO3 heterostructures

    Get PDF
    We report the formation of a novel ferromagnetic state in the antiferromagnet BiFeO3 at the interface with La0.7Sr0.3MnO3. Using x-ray magnetic circular dichroism at Mn and Fe L2,3-edges, we discovered that the development of this ferromagnetic spin structure is strongly associated with the onset of a significant exchange bias. Our results demonstrate that the magnetic state is directly related with an electronic orbital reconstruction at the interface, which is supported by the linearly polarized x-ray absorption measurement at oxygen K-edge.Comment: 17 pages, 4 figures, PRL in pres
    corecore