15 research outputs found

    Diversity, host specialization, and geographic structure of filarial nematodes infecting Malagasy bats

    Get PDF
    We investigated filarial infection in Malagasy bats to gain insights into the diversity of these parasites and explore the factors shaping their distribution. Samples were obtained from 947 individual bats collected from 52 sites on Madagascar and representing 31 of the 44 species currently recognized on the island. Samples were screened for the presence of micro-and macro-parasites through both molecular and morphological approaches. Phylogenetic analyses showed that filarial diversity in Malagasy bats formed three main groups, the most common represented by Litomosa spp. infecting Miniopterus spp. (Miniopteridae); a second group infecting Pipistrellus cf. hesperidus (Vespertilionidae) embedded within the Litomosoides cluster, which is recognized herein for the first time from Madagascar; and a third group composed of lineages with no clear genetic relationship to both previously described filarial nematodes and found in M. griveaudi, Myotis goudoti, Neoromicia matroka (Vespertilionidae), Otomops madagascariensis (Molossidae), and Paratriaenops furculus (Hipposideridae). We further analyzed the infection rates and distribution pattern of Litomosa spp., which was the most diverse and prevalent filarial taxon in our sample. Filarial infection was disproportionally more common in males than females in Miniopterus spp., which might be explained by some aspect of roosting behavior of these cave-dwelling bats. We also found marked geographic structure in the three Litomosa clades, mainly linked to bioclimatic conditions rather than host-parasite associations. While this study demonstrates distinct patterns of filarial nematode infection in Malagasy bats and highlights potential drivers of associated geographic distributions, future work should focus on their alpha taxonomy and characterize arthropod vectors

    Human plague: An old scourge that needs new answers

    Get PDF
    Yersinia pestis, the bacterial causative agent of plague, remains an important threat to human health. Plague is a rodent-borne disease that has historically shown an outstanding ability to colonize and persist across different species, habitats, and environments while provoking sporadic cases, outbreaks, and deadly global epidemics among humans. Between September and November 2017, an outbreak of urban pneumonic plague was declared in Madagascar, which refocused the attention of the scientific community on this ancient human scourge. Given recent trends and plague’s resilience to control in the wild, its high fatality rate in humans without early treatment, and its capacity to disrupt social and healthcare systems, human plague should be considered as a neglected threat. A workshop was held in Paris in July 2018 to review current knowledge about plague and to identify the scientific research priorities to eradicate plague as a human threat. It was concluded that an urgent commitment is needed to develop and fund a strong research agenda aiming to fill the current knowledge gaps structured around 4 main axes: (i) an improved understanding of the ecological interactions among the reservoir, vector, pathogen, and environment; (ii) human and societal responses; (iii) improved diagnostic tools and case management; and (iv) vaccine development. These axes should be cross-cutting, translational, and focused on delivering context-specific strategies. Results of this research should feed a global control and prevention strategy within a “One Health” approach

    Leptospira and paramyxovirus infection dynamics in a bat maternity enlightens pathogen maintenance in wildlife

    No full text
    Bats are reservoirs for several zoonotic pathogens of medical importance; however, infection dynamics of pathogens in wild bat populations remain poorly understood. Here, we examine the influence of host crowding and population age structure on pathogen transmission and diversity in bat populations. Focusing on two pathogen taxa of medical importance, Leptospira bacteria and paramyxoviruses, we monitored host population and pathogen shedding dynamics within a maternity colony of the tropical bat species Mormopterus francoismoutoui, endemic to Reunion Island. Our data reveal astonishingly similar infection dynamics for Leptospira and paramyxoviruses, with infection peaks during late pregnancy and 2 months after the initial birth pulse. Furthermore, although co-infection occurs frequently during the peaks of transmission, the patterns do not suggest any interaction between the two pathogens. Partial sequencing reveals a unique bat-specific Leptospira strain contrasting with the co-circulation of four separate paramyxovirus lineages along the whole breeding period. Patterns of infection highlight the importance of host crowding in pathogen transmission and suggest that most bats developed immune response and stop excreting pathogens. Our results support that bat maternity colonies may represent hot spots of transmission for bacterial and viral infectious agents, and highlight how seasonality can be an important determinant of host-parasite interactions and disease emergence

    Identification of novel paramyxoviruses in insectivorous bats of the Southwest Indian Ocean

    No full text
    Bats are reservoirs for many emerging zoonotic viruses. In this study, we screened 197 animals from 15 different bat species of the Southwest Indian Ocean for paramyxovirus infection and identified paramyxoviruses in five insectivorous bat-species from the Union of the Comoros (3/66), Mauritius (1/55) and Madagascar (4/76). Viral isolation was possible via cell culture and phylogenetic analysis revealed these viruses clustered in a Morbillivirus-related lineage, with relatively high nucleotide sequence similarity to other recently discovered insectivorous-bat paramyxoviruses but distinct from those known to circulate in frugivorous bats

    Highly diverse morbillivirus-related paramyxoviruses in wild fauna of the Southwestern Indian Ocean Islands : evidence of exchange between introduced and endemic small mammals

    No full text
    The Paramyxoviridae form an increasingly diverse viral family, infecting a wide variety of different hosts. In recent years, they have been linked to disease emergence in many different animal populations and in humans. Bats and rodents have been identified as major animal populations capable of harboring paramyxoviruses, and host shifting between these animals is likely to be an important driving factor in the underlying evolutionary processes that eventually lead to disease emergence. Here, we have studied paramyxovirus circulation within populations of endemic and introduced wild small mammals of the southwestern Indian Ocean region and belonging to four taxonomic orders: Rodentia, Afrosoricida, Soricomorpha, and Chiroptera. We report elevated infection levels as well as widespread paramyxovirus dispersal and frequent host exchange of a newly emerging genus of the Paramyxoviridae, currently referred to as the unclassified morbillivirus-related viruses (UMRVs). In contrast to other genera of the Paramyxoviridae, where bats have been shown to be a key host species, we show that rodents (and, in particular, Rattus rattus) are significant spreaders of UMRVs. We predict that the ecological particularities of the southwestern Indian Ocean, where small mammal species often live in densely packed, multispecies communities, in combination with the increasing invasion of R. rattus and perturbations of endemic animal communities by active anthropological development, will have a major influence on the dynamics of UMRV infection. IMPORTANCE Identification of the infectious agents that circulate within wild animal reservoirs is essential for several reasons: (i) infectious disease outbreaks often originate from wild fauna; (ii) anthropological expansion increases the risk of contact between human and animal populations and, as a result, the risk of disease emergence; (iii) evaluation of pathogen reservoirs helps in elaborating preventive measures to limit the risk of disease emergence. Many paramyxoviruses for which bats and rodents serve as major reservoirs have demonstrated their potential to cause disease in humans and animals. In the context of the biodiversity hot spot of southwestern Indian Ocean islands and their rich endemic fauna, we show that highly diverse UMRVs exchange between various endemic animal species, and their dissemination likely is facilitated by the introduced Rattus rattus. Hence, many members of the Paramyxoviridae appear well adapted for the study of the viral phylodynamics that may be associated with disease emergence
    corecore