42 research outputs found

    Finite Element Analysis of Bone and Experimental Validation

    Get PDF
    This chapter describes the application of the finite element (FE) method to bone tissues. The aspects that differ the most between bone and other materials’ FE analysis are the type of elements used, constitutive models, and experimental validation. These aspects are looked at from a historical evolution stand point. Several types of elements can be used to simulate similar bone structures and within the same analysis many types of elements may be needed to realistically simulate an anatomical part. Special attention is made to constitutive models, including the use of density-elasticity relationships made possible through CT-scanned images. Other more complex models are also described that include viscoelasticity and anisotropy. The importance of experimental validation is discussed, describing several methods used by different authors in this challenging field. The use of cadaveric human bones is not always possible or desirable and other options are described, as the use of animal or artificial bones. Strain and strain rate measuring methods are also discussed, such as rosette strain gauges and optical devices.publishe

    Barriers to Predicting the Mechanisms and Risk Factors of Non-Contact Anterior Cruciate Ligament Injury

    Get PDF
    High incidences of non-contact anterior cruciate ligament (ACL) injury, frequent requirements for ACL reconstruction, and limited understanding of ACL mechanics have engendered considerable interest in quantifying the ACL loading mechanisms. Although some progress has been made to better understand non-contact ACL injuries, information on how and why non-contact ACL injuries occur is still largely unavailable. In other words, research is yet to yield consensus on injury mechanisms and risk factors. Biomechanics, video analysis, and related study approaches have elucidated to some extent how ACL injuries occur. However, these approaches are limited because they provide estimates, rather than precise measurements of knee - and more specifically ACL - kinematics at the time of injury. These study approaches are also limited in their inability to simultaneously capture many of the contributing factors to injury

    Fixation of the Cemented Stem: Clinical Relevance of the Porosity and Thickness of the Cement Mantle

    Get PDF
    The aim of this review paper is to define the fixation of the cemented stem. Polymethyl methacrylate, otherwise known as “bone cement”, has been used in the fixation of hip implants since the early 1960s. Sir John Charnley, the pioneer of modern hip replacement, incorporated the use of cement in the development of low frictional torque hip arthroplasty. In this paper, the concepts of femoral stem design and fixation, clinical results, and advances in understanding of the optimal use of cement are reviewed. The purpose of this paper is to help understanding and discussions on the thickness and the porosity of the cement mantle in total hip arthroplasty. Cement does not act as an adhesive, as sometimes thought, but relies on an interlocking fit to provide mechanical stability at the cement–bone interface, while at the prosthesis– cement interface it achieves stability by optimizing the fit of the implant in the cement mantle, such as in a tapered femoral stem

    Role of high tibial osteotomy in chronic injuries of posterior cruciate ligament and posterolateral corner

    Get PDF
    High tibial osteotomy (HTO) is a surgical procedure used to change the mechanical weight-bearing axis and alter the loads carried through the knee. Conventional indications for HTO are medial compartment osteoarthritis and varus malalignment of the knee causing pain and dysfunction. Traditionally, knee instability associated with varus thrust has been considered a contraindication. However, today the indications include patients with chronic ligament deficiencies and malalignment, because an HTO procedure can change not only the coronal but also the sagittal plane of the knee. The sagittal plane has generally been ignored in HTO literature, but its modification has a significant impact on biomechanics and joint stability. Indeed, decreased posterior tibial slope causes posterior tibia translation and helps the anterior cruciate ligament (ACL)-deficient knee. Vice versa, increased tibial slope causes anterior tibia translation and helps the posterior cruciate ligament (PCL)-deficient knee. A review of literature shows that soft tissue procedures alone are often unsatisfactory for chronic posterior instability if alignment is not corrected. Since limb alignment is the most important factor to consider in lower limb reconstructive surgery, diagnosis and treatment of limb malalignment should not be ignored in management of chronic ligamentous instabilities. This paper reviews the effects of chronic posterior instability and tibial slope alteration on knee and soft tissues, in addition to planning and surgical technique for chronic posterior and posterolateral instability with HTO
    corecore