33 research outputs found

    A METHOD AND SYSTEM FOR PROVIDING NON-VISUAL INTERACTION BASED AUTHENTICATION

    Get PDF
    The present disclosure relates to a method and system for providing non-visual interaction based authentication. Such non-visual interaction based authentication may be provided in any user equipment of a user. Moreover, such non-visual interaction based authentication may be especially provided for specially abled users which utilise accessibility features. The method includes combining non-visual interaction modalities for entering authentication pin discreetly, using buttons or other modalities available on the user equipment

    A METHOD AND USER EQUIPMENT FOR PROVIDING VIBRATION BASED COMMUNICATION OF SENSITIVE INFORMATION FOR VISUALLY IMPAIRED USERS

    Get PDF
    The present disclosure relates to a method and user equipment (UE) (102) for providing vibration-based communication of sensitive information for visually impaired users (101). In the present disclosure, initially the UE (102) may receive a request from the visually impaired user (101) to access information present on a virtual card. The UE (102) detects whether the information requested corresponds to be sensitive information. Further, the UE (102) encodes the information into a vibration pattern on confirming it to be sensitive information. Finally, the UE (102) generates the encoded vibration patterns for the visually impaired users (101) to complete the transaction, wherein the visually impaired user (101) refers to an instruction manual to decode the vibration pattern

    CONTINUOUS AUTHENTICATION USING ACCESSIBILITY SETTINGS AND USAGE ANALYSIS

    Get PDF
    The present invention discloses a method and system for continuous authentication using accessibility settings and usage analysis which can be used during mobile application login. An Artificial Intelligence (AI) based system, continuously captures and analyses a specially abled user’s behaviour and accessibility settings. The AI would then come up with a risk based score. This risk score will then be used to decide whether or not to skip Multi Factor Authentication (MFA)

    Role of Cell-Penetrating Peptides in Intracellular Delivery of Peptide Nucleic Acids Targeting Hepadnaviral Replication

    Get PDF
    Peptide nucleic acids (PNAs) are potentially attractive antisense agents against hepatitis B virus (HBV), although poor cellular uptake limits their therapeutic application. In the duck HBV (DHBV) model, we evaluated different cell-penetrating peptides (CPPs) for delivery to hepatocytes of a PNA-targeting hepadnaviral encapsidation signal (ε). This anti-ε PNA exhibited sequence-specific inhibition of DHBV RT in a cell-free system. Investigation of the best in vivo route of delivery of PNA conjugated to (D-Arg)8 (P1) showed that intraperitoneal injection to ducklings was ineffective, whereas intravenously (i.v.) injected fluorescein-P1-PNA reached the hepatocytes. Treatment of virus carriers with i.v.-administered P1-PNA resulted in a decrease in viral DNA compared to untreated controls. Surprisingly, a similar inhibition of viral replication was observed in vivo as well as in vitro in primary hepatocyte cultures for a control 2 nt mismatched PNA conjugated to P1. By contrast, the same PNA coupled to (D-Lys)4 (P2) inhibited DHBV replication in a sequence-specific manner. Interestingly, only P1, but not P2, displayed anti-DHBV activity in the absence of PNA cargo. Hence, we provide new evidence that CPP-PNA conjugates inhibit DHBV replication following low-dose administration. Importantly, our results demonstrate the key role of CPPs used as vehicles in antiviral specificity of CPP-PNA conjugates

    Molecular footprints reveal the impact of the protective HLA-A*03 allele in hepatitis C virus infection

    Get PDF
    Background and aims: CD8 T cells are central to the control of hepatitis C virus (HCV) although the key features of a successful CD8 T cell response remain to be defined. In a cohort of Irish women infected by a single source, a strong association between viral clearance and the human lecucocyte (HLA)-A*03 allele has been described, and the aim of this study was to define the protective nature of the associated CD8 T cell response. Methods: A sequence-led approach was used to identify HLA-A*03-restricted epitopes. We examine the CD8 T cell response associated with this gene and address the likely mechanism underpinning this protective effect in this special cohort, using viral sequencing, T cell assays and analysis of fitness of viral mutants. Results: A strong 'HLA footprint' in a novel NS3 epitope (TVYHGAGTK) was observed. A lysine (K) to arginine (R) substitution at position 9 (K1088R) was seen in a significant number of A*03-positive patients (9/12) compared with the control group (1/33, p=0.0003). Threonine (T) was also substituted with alanine (A) at position 8 (T1087A) more frequently in A*03-positive patients (6/12) compared with controls (2/33, p=0.01), and the double substitution of TK to AR was also observed predominantly in HLA-A*03- positive patients (p=0.004). Epitope-specific CD8 T cell responses were observed in 60% of patients three decades after exposure and the mutants selected in vivo impacted on recognition in vitro. Using HCV replicons matched to the viral sequences, viral fitness was found to be markedly reduced by the K1088R substitution but restored by the second substitution T1087A. Conclusions: It is proposed that at least part of the protective effect of HLA-A*03 results from targeting of this key epitope in a functional site: the requirement for two mutations to balance fitness and escape provides an initial host advantage. This study highlights the potential protective impact of common HLA-A alleles against persistent viruses, with important implications for HCV vaccine studies

    Systemic iron reduction by venesection alters the gut microbiome in patients with haemochromatosis

    Get PDF
    Background & Aims: Iron reduction by venesection has been the cornerstone of treatment for haemochromatosis for decades, and its reported health benefits are many. Repeated phlebotomy can lead to a compensatory increase in intestinal iron absorption, reducing intestinal iron availability. Given that most gut bacteria are highly dependent on iron for survival, we postulated that, by reducing gut iron levels, venesection could alter the gut microbiota. Methods: Clinical parameters, faecal bacterial composition and metabolomes were assessed before and during treatment in a group of patients with haemochromatosis undergoing iron reduction therapy. Results: Systemic iron reduction was associated with an alteration of the gut microbiome, with changes evident in those who experienced reduced faecal iron availability with venesection. For example, levels of Faecalibacterium prausnitzii, a bacterium associated with improved colonic health, were increased in response to faecal iron reduction. Similarly, metabolomic changes were seen in association with reduced faecal iron levels. Conclusion: These findings highlight a significant shift in the gut microbiome of patients who experience reduced colonic iron during venesection. Targeted depletion of faecal iron could represent a novel therapy for metabolic and inflammatory diseases, meriting further investigation. Lay summary: Iron depletion by repeated venesection is the mainstay of treatment for haemochromatosis, an iron-overload disorder. Venesection has been associated with several health benefits, including improvements in liver function tests, reversal of liver scarring, and reduced risk of liver cancer. During iron depletion, iron absorption from the gastrointestinal (GI) tract increases to compensate for iron lost with treatment. Iron availability is limited in the GI tract and is crucial to the growth and function of many gut bacteria. In this study we show that reduced iron availability in the colon following venesection treatment leads to a change in the composition of the gut bacteria, a finding that, to date, has not been studied in patients with haemochromatosis

    Detection of neutralising antibodies to SARS-CoV-2 to determine population exposure in Scottish blood donors between March and May 2020.

    Get PDF
    BackgroundThe progression and geographical distribution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the United Kingdom (UK) and elsewhere is unknown because typically only symptomatic individuals are diagnosed. We performed a serological study of blood donors in Scotland in the spring of 2020 to detect neutralising antibodies to SARS-CoV-2 as a marker of past infection and epidemic progression.AimOur objective was to determine if sera from blood bank donors can be used to track the emergence and progression of the SARS-CoV-2 epidemic.MethodsA pseudotyped SARS-CoV-2 virus microneutralisation assay was used to detect neutralising antibodies to SARS-CoV-2. The study comprised samples from 3,500 blood donors collected in Scotland between 17 March and 18 May 2020. Controls were collected from 100 donors in Scotland during 2019.ResultsAll samples collected on 17 March 2020 (n = 500) were negative in the pseudotyped SARS-CoV-2 virus microneutralisation assay. Neutralising antibodies were detected in six of 500 donors from 23 to 26 March. The number of samples containing neutralising antibodies did not significantly rise after 5-6 April until the end of the study on 18 May. We found that infections were concentrated in certain postcodes, indicating that outbreaks of infection were extremely localised. In contrast, other areas remained comparatively untouched by the epidemic.ConclusionAlthough blood donors are not representative of the overall population, we demonstrated that serosurveys of blood banks can serve as a useful tool for tracking the emergence and progression of an epidemic such as the SARS-CoV-2 outbreak

    Antiviral activity of bone morphogenetic proteins and activins

    Get PDF
    Understanding the control of viral infections is of broad importance. Chronic hepatitis C virus (HCV) infection causes decreased expression of the iron hormone hepcidin, which is regulated by hepatic bone morphogenetic protein (BMP)/SMAD signalling. We found that HCV infection and the BMP/SMAD pathway are mutually antagonistic. HCV blunted induction of hepcidin expression by BMP6, probably via tumour necrosis factor (TNF)-mediated downregulation of the BMP co-receptor haemojuvelin. In HCV-infected patients, disruption of the BMP6/hepcidin axis and genetic variation associated with the BMP/SMAD pathway predicted the outcome of infection, suggesting that BMP/SMAD activity influences antiviral immunity. Correspondingly, BMP6 regulated a gene repertoire reminiscent of type I interferon (IFN) signalling, including upregulating interferon regulatory factors (IRFs) and downregulating an inhibitor of IFN signalling, USP18. Moreover, in BMP-stimulated cells, SMAD1 occupied loci across the genome, similar to those bound by IRF1 in IFN-stimulated cells. Functionally, BMP6 enhanced the transcriptional and antiviral response to IFN, but BMP6 and related activin proteins also potently blocked HCV replication independently of IFN. Furthermore, BMP6 and activin A suppressed growth of HBV in cell culture, and activin A inhibited Zika virus replication alone and in combination with IFN. The data establish an unappreciated important role for BMPs and activins in cellular antiviral immunity, which acts independently of, and modulates, IFN

    T cell assays differentiate clinical and subclinical SARS-CoV-2 infections from cross-reactive antiviral responses

    Get PDF
    Identification of protective T cell responses against SARS-CoV-2 requires distinguishing people infected with SARS-CoV-2 from those with cross-reactive immunity to other coronaviruses. Here we show a range of T cell assays that differentially capture immune function to characterise SARS-CoV-2 responses. Strong ex vivo ELISpot and proliferation responses to multiple antigens (including M, NP and ORF3) are found in 168 PCR-confirmed SARS-CoV-2 infected volunteers, but are rare in 119 uninfected volunteers. Highly exposed seronegative healthcare workers with recent COVID-19-compatible illness show T cell response patterns characteristic of infection. By contrast, >90% of convalescent or unexposed people show proliferation and cellular lactate responses to spike subunits S1/S2, indicating pre-existing cross-reactive T cell populations. The detection of T cell responses to SARS-CoV-2 is therefore critically dependent on assay and antigen selection. Memory responses to specific non-spike proteins provide a method to distinguish recent infection from pre-existing immunity in exposed populations

    Stability and Control characteristics of MIG-21 aircraft

    Get PDF
    This document provides the stability and control derivatives data for the MIG-21BIS aircraft in the form readily usable for control system synthesis. Analytical prediction of the aircraft modes, typical time responses as well as Bode plots in the frequency domain are presented. Longitudinal dynamics data presented in this document supersedes the one provided in NAL PD SE 8501
    corecore