7 research outputs found

    Phytoserotonin: A review

    No full text
    Serotonin (5-hydroxytryptamine; SER) is one of the well-studied indoleamine neurotransmitters in vertebrates. Recently SER has also been reported in wide range of plant species. The precise function of SER at the physiological level, particularly growth regulation, flowering, xylem sap exudation, ion permeability and plant morphogenesis in plant system has not been clear. Though SER is found in different parts of plant species including leaves, stems, roots, fruits and seeds, the quantity of SER within plant tissues varies widely. SER has been recently shown as a plant hormone in view of its auxin-like activity. This brief review provides an overview of SER biosynthesis, localization, its role in plant morphogenesis and possible physiological functions in plants. This would certainly help to elucidate further the multiple roles of SER in plant morphogenesis. In the future it may form the basis for studies on involvement of SER in cellular signaling mechanisms in plants. Apart from these gaps in understanding the role of SER in ontogeny of plant physiology and ecological, adaptations have been emphasized. Thus, overall perspectives in this area of research and its possible implications have been presented

    Influence of abiotic stress signals on secondary metabolites in plants

    No full text
    Plant secondary metabolites are unique sources for pharmaceuticals, food additives, flavors, and industrially important biochemicals. Accumulation of such metabolites often occurs in plants subjected to stresses including various elicitors or signal molecules. Secondary metabolites play a major role in the adaptation of plants to the environment and in overcoming stress conditions. Environmental factors viz. temperature, humidity, light intensity, the supply of water, minerals, and CO2 influence the growth of a plant and secondary metabolite production. Drought, high salinity, and freezing temperatures are environmental conditions that cause adverse effects on the growth of plants and the productivity of crops. Plant cell culture technologies have been effective tools for both studying and producing plant secondary metabolites under in vitro conditions and for plant improvement. This brief review summarizes the influence of different abiotic factors include salt, drought, light, heavy metals, frost etc. on secondary metabolites in plants. The focus of the present review is the influence of abiotic factors on secondary metabolite production and some of important plant pharmaceuticals. Also, we describe the results of in vitro cultures and production of some important secondary metabolites obtained in our laboratory

    Only a matter of time: the impact of daily and seasonal rhythms on phytochemicals

    No full text
    corecore