46 research outputs found

    Masgomas-4: Physical characterization of a double-core obscured cluster with a massive and very young stellar population

    Full text link
    The discovery of new, obscured massive star clusters has changed our understanding of the Milky Way star-forming activity from a passive to a very active star-forming machine. The search for these obscured clusters is strongly supported by the use of all-sky, near-IR surveys. The main goal of the MASGOMAS project is to search for and study unknown, young, and massive star clusters in the Milky Way, using near-IR data. Here we try to determine the main physical parameters (distance, size, total mass, and age) of Masgomas-4, a new double-core obscured cluster. Using near-IR photometry (JJ, HH, and KSK_S) we selected a total of 21 stars as OB-type star candidates. Multi-object, near-IR follow-up spectroscopy allowed us to carry out the spectral classification of the OB-type candidates. Of the 21 spectroscopically observed stars, ten are classified as OB-type stars, eight as F- to early G-type dwarf stars, and three as late-type giant stars. Spectroscopically estimated distances indicate that the OB-type stars belong to the same cluster, located at a distance of 1.900.90+1.281.90^{+1.28}_{-0.90} kpc. Our spectrophotometric data confirm a very young and massive stellar population, with a clear concentration of pre-main-sequence massive candidates (Herbig Ae/Be) around one of the cluster cores. The presence of a surrounding HII cloud and the Herbig Ae/Be candidates indicate an upper age limit of 5 Myr.Comment: Accepted for publication in A&

    Discovery of a young and massive stellar cluster: Spectrophotometric near-infrared study of Masgomas-1

    Full text link
    Context: Recent near-infrared data have contributed to the discovery of new (obscured) massive stellar clusters and massive stellar populations in previously known clusters in our Galaxy. These discoveries lead us to view the Milky Way as an active star-forming machine. Aims: The main purpose of this work is to determine physically the main parameters (distance, size, total mass and age) of Masgomas-1, the first massive cluster discovered by our systematic search programme. Methods: Using near-infrared (J, H, and Ks) photometry we selected 23 OB-type and five red supergiant candidates for multi-object H- and K-spectroscopy and spectral classification. Results: Of the 28 spectroscopically observed stars, 17 were classified as OB-type, four as supergiants, one as an A-type dwarf star, and six as late-type giant stars. The presence of a supergiant population implies a massive nature of Masgomas-1, supported by our estimate of the cluster initial total mass of (1.94\pm0.28)\cdot10^4 M_{sun}, obtained after integrating of the cluster mass function. The distance estimate of 3.53 kpc locates the cluster closer than the Scutum--Centaurus base but still within that Galactic arm. The presence of an O9V star and red supergiants in the same population indicates that the cluster age is in the range of 8 to 10 Myr.Comment: 11 pages, 6 figures, 2 tables, A&A accepte

    Massive open star clusters using the VVV survey III: A young massive cluster at the far edge of the Galactic bar

    Get PDF
    Context: Young massive clusters are key to map the Milky Way's structure, and near-IR large area sky surveys have contributed strongly to the discovery of new obscured massive stellar clusters. Aims: We present the third article in a series of papers focused on young and massive clusters discovered in the VVV survey. This article is dedicated to the physical characterization of VVV CL086, using part of its OB-stellar population. Methods: We physically characterized the cluster using JHKSJHK_S near-infrared photometry from ESO public survey VVV images, using the VVV-SkZ pipeline, and near-infrared KK-band spectroscopy, following the methodology presented in the first article of the series. Results: Individual distances for two observed stars indicate that the cluster is located at the far edge of the Galactic bar. These stars, which are probable cluster members from the statistically field-star decontaminated CMD, have spectral types between O9 and B0V. According to our analysis, this young cluster (1.01.0 Myr << age <5.0< 5.0 Myr) is located at a distance of 116+511^{+5}_{-6} kpc, and we estimate a lower limit for the cluster total mass of (2.81.4+1.6)103M(2.8^{+1.6}_{-1.4})\cdot10^3 {M}_{\odot}. It is likely that the cluster contains even earlier and more massive stars.Comment: Accepted for publication as a Letter in A&

    New galactic star clusters discovered in the VVV survey : Candidates projected on the inner disk and bulge

    Get PDF
    Context. VISTA Variables in the Vía Láctea (VVV) is one of six ESO Public Surveys using the 4 meter Visible and Infrared Survey Telescope for Astronomy (VISTA). The VVV survey covers the Milky Way bulge and an adjacent section of the disk, and one of the principal objectives is to search for new star clusters within previously unreachable obscured parts of the Galaxy. Aims. The primary motivation behind this work is to discover and analyze obscured star clusters in the direction of the inner Galactic disk and bulge. Methods. Regions of the inner disk and bulge covered by the VVV survey were visually inspected using composite JHKS color images to select new cluster candidates on the basis of apparent overdensities. DR1, DR2, CASU, and point spread function photometry of 10 × 10 arcmin fields centered on each candidate cluster were used to construct color-magnitude and color-color diagrams. Follow-up spectroscopy of the brightest members of several cluster candidates was obtained in order to clarify their nature. Results. We report the discovery of 58 new infrared cluster candidates. Fundamental parameters such as age, distance, and metallicity were determined for 20 of the most populous clusters.Peer reviewedFinal Accepted Versio

    Near-infrared spectroscopy in NGC 7538

    Full text link
    The characterisation of the stellar population toward young high-mass star-forming regions allows to constrain fundamental cluster properties like distance and age. These are essential when using high-mass clusters as probes to conduct Galactic studies. NGC 7538 is a star-forming region with an embedded stellar population only unearthed in the near-infrared. We present the first near-infrared spectro-photometric study of the candidate high-mass stellar content in NGC 7538. We obtained H and K spectra of 21 sources with both the multi-object and long-slit modes of LIRIS at the WHT, and complement these data with sub-arcsecond JHKs photometry of the region using the imaging mode of the same instrument. We find a wide variety of objects within the studied stellar population of NGC 7538. Our results discriminate between a stellar population associated to the HII region, but not contained within its extent, and several pockets of more recent star formation. We report the detection of CO bandhead emission toward several sources as well as other features indicative of a young stellar nature. We infer a spectro-photometric distance of 2.7+-0.5 kpc, an age spread in the range 0.5-2.2 Myr and a total mass ~1.7x10^3 Msun for the older population.Comment: 11 pages, 8 figures, 1 table, accepted by A&

    Vinculación entre varios cúmulos estelares y estructuras del medio interestelar

    Get PDF
    Se estudiaron los cumulos inmersos DBS77, 78, 102, 160 y 161 localizados en el plano Galáctico en el cuarto cuadrante de la Vía Láctea y el medio interestelar (MIE) circundante. Se analizo fotometra UBVIc (SOAR) y espectroscopa infrarroja (NTT, ESO). Estos datos fueron complementados con las bandas JHK (VVV+2MASS), HI en 21 cm (SGPS), 1.4 GHz (ATCA) y 4.85 GHz (PMN). Se realizo un analisis multibanda y clasicación espectral de las estrellas brillantes de cada zona. Se identicaron tambien, estructuras del MIE posiblemente vinculadas con los cumulos. Finalmente, se obtuvieron valores preliminares para los parametros fundamentales de los cumulos estudiados y de las estructuras del MIE. Se estudio la vinculacion entre ambos.Fil: Corti, Mariela Alejandra. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Baume, Gustavo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Panei, Jorge Alejandro. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Suad, Laura Andrea. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Testori, Juan Carlos. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Borissova, Jura. Universidad de Valparaíso; ChileFil: Kurtev, R.. Universidad de Valparaíso; ChileFil: Chené, A. N.. Gemini Observatory; Estados UnidosFil: Ramírez Alegría, S.. Universidad de Valparaíso; Chile57° Reunión Anual de la Asociación Argentina de AstronomíaCórdobaArgentinaInstituto de Astronomía Teórica y ExperimentalUniversidad Nacional de Córdob

    The nature of the Cygnus extreme B supergiant 2MASS J20395358+4222505

    Get PDF
    2MASS J20395358+4222505 is an obscured early B supergiant near the massive OB star association Cygnus OB2. Despite its bright infrared magnitude (Ks = 5.82) it has remained largely ignored because of its dim optical magnitude (B = 16.63, V = 13.68). In a previous paper, we classified it as a highly reddened, potentially extremely luminous, early B-type supergiant. We obtained its spectrum in the U, B and R spectral bands during commissioning observations with the instrument MEGARA at the Gran Telescopio CANARIAS. It displays a particularly strong Hα emission for its spectral type, B1 Ia. The star seems to be in an intermediate phase between supergiant and hypergiant, a group that it will probably join in the near (astronomical) future. We observe a radial velocity difference between individual observations and determine the stellar parameters, obtaining Teff = 24 000 K and log gc = 2.88 ± 0.15. The rotational velocity found is large for a B supergiant, v sin i = 110 ± 25 kms−1⁠. The abundance pattern is consistent with solar, with a mild C underabundance (based on a single line). Assuming that J20395358+4222505 is at the distance of Cyg OB2, we derive the radius from infrared photometry, finding R = 41.2 ± 4.0 R⊙, log(L/L⊙) = 5.71 ± 0.04 and a spectroscopic mass of 46.5 ± 15.0 M⊙. The clumped mass-loss rate (clumping factor 10) is very high for the spectral type, M˙ = 2.4 × 10−6 M⊙ a−1. The high rotational velocity and mass-loss rate place the star at the hot side of the bi-stability jump. Together with the nearly solar CNO abundance pattern, they may also point to evolution in a binary system, J20395358+4222505 being the initial secondary.SS-D and AH acknowledge support from the Spanish Government Ministerio de Ciencia e Innovación through grants PGC-2018-091 3741-B-C22 and CEX2019-000920-S and from the Canarian Agency for Research, Innovation and Information Society (ACIISI), of the Canary Islands Government, and the European Regional Development Fund (ERDF), under grant with reference ProID2020010016. MG and FN acknowledge financial support through Spanish grant PID2019-105552RB-C41 (MINECO/MCIU/AEI/FEDER) and from the Spanish State Research Agency (AEI) through the Unidad de Excelencia ‘María de Maeztu’-Centro de Astrobiología (CSIC-INTA) project No. MDM-2017-0737. SRB acknowledges support by the Spanish Government under grants AYA2015-68012-C2-2-P and PGC2018-093741-B-C21/C22 (MICIU/AEI/FEDER, UE). SRA acknowledges funding support from the FONDECYT Iniciación project 11171025 and the FONDECYT Regular project 1201490. JIP acknowledges finantial support from projects Estallidos6 AYA2016-79724-C4 (Spanish Ministerio de Economia y Competitividad), Estallidos7 PID2019-107408GB-C44 (Spanish Ministerio de Ciencia e Innovacion), grant P18-FR-2664 (Junta de Andalucía), and grant SEV-2017-0709 ‘Centro de Excelencia Severo Ochoa Program’ (Spanish Science Ministry). AGP, SP, AG-M, JG and NC acknowledge support from the Spanish MCI through project RTI2018-096188-B-I00

    VVVX-Gaia Discovery of a Low Luminosity Globular Cluster in the Milky Way Disk

    Get PDF
    © 2020 ESOMilky Way globular clusters (MW GCs) are difficult to identify at low Galactic latitudes because of high differential extinction and heavy star crowding. The new deep near-IR images and photometry from the VISTA Variables in the Via L\'actea Extended Survey (VVVX) allow us to chart previously unexplored regions. Our long term aim is to complete the census of MW GCs. The immediate goals are to estimate the astrophysical parameters, measuring their reddenings, extinctions, distances, total luminosities, proper motions, sizes, metallicities and ages. We use the near-IR VVVX survey database, in combination with Gaia DR2 optical photometry, and with the Two Micron All Sky Survey (2MASS) photometry. We report the detection of a heretofore unknown Galactic Globular Cluster at RA = 14:09:00.0; DEC=-65:37:12 (J2000). We calculate a reddening of E(J-K_s)=(0.3 +/- 0.03) mag and an extinction of A_Ks=(0.15 +/- 0.01) mag for this new GC. Its distance modulus and corresponding distance were measured as (m-M)=(15.93 +/- 0.03) mag and D=(15.5 +/- 1.0) kpc, respectively. We estimate the metallicity and age by comparison with known GCs and by fitting PARSEC and Dartmouth isochrones, finding [Fe/H]=(0.70±0.2)[Fe/H]=(-0.70\pm0.2) dex and t=(11.0 +/- 1.0) Gyr. The mean GC PMs from Gaia are mu_alpha^(star)=(-4.68 +/- 0.47) mas yr^(-1) and mu_delta=(-1.34 \pm 0.45) mas yr^(-1). The total luminosity of our cluster is estimated to be M_Ks=(-7.76 +/- 0.5) mag. We have found a new low-luminosity, old and metal-rich globular cluster, situated in the far side of the Galactic disk, at R_G=11.2 kpc from the Galactic centre, and at z=1.0 kpc below the plane. Interestingly, the location, metallicity and age of this globular cluster are coincident with the Monoceros Ring (MRi) structure.Peer reviewe
    corecore