400 research outputs found

    Transient Changes in the Plasma of Astrocytic and Neuronal Injury Biomarkers in COVID-19 Patients without Neurological Syndromes

    Get PDF
    The levels of several glial and neuronal plasma biomarkers have been found to increase during the acute phase in COVID-19 patients with neurological symptoms. However, replications in patients with minor or non-neurological symptoms are needed to understand their potential as indicators of CNS injury or vulnerability. Plasma levels of glial fibrillary acidic protein (GFAP), neurofilament light chain protein (NfL), and total Tau (T-tau) were determined by Single molecule array (Simoa) immunoassays in 45 samples from COVID-19 patients in the acute phase of infection [moderate (n = 35), or severe (n = 10)] with minor or non-neurological symptoms; in 26 samples from fully recovered patients after ~2 months of clinical follow-up [moderate (n = 23), or severe (n = 3)]; and in 14 non-infected controls. Plasma levels of the SARS-CoV-2 receptor, angiotensin-converting enzyme 2 (ACE2), were also determined by Western blot. Patients with COVID-19 without substantial neurological symptoms had significantly higher plasma concentrations of GFAP, a marker of astrocytic activation/injury, and of NfL and T-tau, markers of axonal damage and neuronal degeneration, compared with controls. All these biomarkers were correlated in COVID-19 patients at the acute phase. Plasma GFAP, NfL and T-tau levels were all normalized after recovery. Recovery was also observed in the return to normal values of the quotient between the ACE2 fragment and circulating full-length species, following the change noticed in the acute phase of infection. None of these biomarkers displayed differences in plasma samples at the acute phase or recovery when the COVID-19 subjects were sub-grouped according to occurrence of minor symptoms at re-evaluation 3 months after the acute episode (so called post-COVID or "long COVID"), such as asthenia, myalgia/arthralgia, anosmia/ageusia, vision impairment, headache or memory loss. Our study demonstrated altered plasma GFAP, NfL and T-tau levels in COVID-19 patients without substantial neurological manifestation at the acute phase of the disease, providing a suitable indication of CNS vulnerability; but these biomarkers fail to predict the occurrence of delayed minor neurological symptoms

    A colorectal cancer susceptibility new variant at 4q26 in the Spanish population identified by genome-wide association analysis

    Get PDF
    This work was partially supported by the CENIT program from the Centro Tecnológico Industrial (CEN-20091016), grants from the Spanish Institute of Health Carlos III (ADE10/00026, PI09/02444, PI12/00511, Acción Transversal de Cáncer) grants from the Fondo de Investigacion Sanitaria/FEDER (08/1276, 08/0024, PS09/02368, 11/00219, 11/00681), and by COST office through COST action BM1206. SCB is supported by contracts from the Fondo de Investigación Sanitaria (CP 03-0070). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Centro Tecnológico IndustrialInstituto de Salud Carlos IIIFondo de Investigación Sanitaria / FEDE

    Energy Prediction for Cloud Workload Patterns

    Get PDF
    The excessive use of energy consumption in Cloud infrastructures has become one of the major cost factors for Cloud providers to maintain. In order to enhance the energy efficiency of Cloud resources, proactive and reactive management tools are used. However, these tools need to be supported with energy-awareness not only at the physical machine (PM) level but also at virtual machine (VM) level in order to enhance decision-making. This paper introduces an energy-aware profiling model to identify energy consumption for heterogeneous and homogeneous VMs running on the same PM and presents an energy-aware prediction framework to forecast future VMs energy consumption. This framework first predicts the VMs’ workload based on historical workload patterns using Autoregressive Integrated Moving Average (ARIMA) model. The predicted VM workload is then correlated to the physical resources within this framework in order to get the predicted VM energy consumption. Compared with actual results obtained in a real Cloud testbed, the predicted results show that this energy-aware prediction framework can get up to 2.58 Mean Percentage Error (MPE) for the VM workload prediction, and up to −4.47 MPE for the VM energy prediction based on periodic workload pattern

    The membrane-spanning 4-domains, subfamily A (MS4A) gene cluster contains a common variant associated with Alzheimer's disease

    Get PDF
    Background\ud In order to identify novel loci associated with Alzheimer's disease (AD), we conducted a genome-wide association study (GWAS) in the Spanish population.\ud \ud Methods\ud We genotyped 1,128 individuals using the Affymetrix Nsp I 250K chip. A sample of 327 sporadic AD patients and 801 controls with unknown cognitive status from the Spanish general population were included in our initial study. To increase the power of the study, we combined our results with those of four other public GWAS datasets by applying identical quality control filters and the same imputation methods, which were then analyzed with a global meta-GWAS. A replication sample with 2,200 sporadic AD patients and 2,301 controls was genotyped to confirm our GWAS findings.\ud \ud Results\ud Meta-analysis of our data and independent replication datasets allowed us to confirm a novel genome-wide significant association of AD with the membrane-spanning 4-domains subfamily A (MS4A) gene cluster (rs1562990, P = 4.40E-11, odds ratio = 0.88, 95% confidence interval 0.85 to 0.91, n = 10,181 cases and 14,341 controls).\ud \ud Conclusions\ud Our results underscore the importance of international efforts combining GWAS datasets to isolate genetic loci for complex diseases

    Efficacy of rifabutin-based triple therapy as second-line treatment to eradicate helicobacter pylori infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rifabutin has been found to be effective in multi-resistant patients after various treatment cycles for Helicobacter pylori (HP) infection, but it has not been analysed as a second-line treatment. Therefore, we seek to compare the effectiveness of a treatment regimen including rifabutin versus conventional quadruple therapy (QT).</p> <p>Methods</p> <p>Open clinical trial, randomised and multi-centre, of two treatment protocols: A) Conventional regime -QT- (omeprazole 20 mg bid, bismuth citrate 120 mg qid, tetracycline 500 mg qid and metronidazole 500 mg tid); B) Experimental one -OAR- (omeprazole 20 mg bid, amoxicillin 1 gr bid, and rifabutin 150 mg bid), both taken orally for 7 days, in patients with HP infection for whom first-line treatment had failed. Eradication was determined by Urea Breath Test (UBT). Safety was determined by the adverse events.</p> <p>Results</p> <p>99 patients were randomised, QT, n = 54; OAR, n = 45. The two groups were homogeneous. In 8 cases, treatment was suspended (6 in QT and 2 in OAR). The eradication achieved, analysed by ITT, was for QT, 38 cases (70.4%), and for OAR, 20 cases (44.4%); p = 0.009, OR = 1.58. Of the cases analysed PP, QT were 77.1%; OAR, 46.5%; p = 0.002. Adverse effects were described in 64% of the QT patients and in 44% of the OAR patients (p = 0.04).</p> <p>Conclusion</p> <p>A 7-day rifabutin-based triple therapy associated to amoxicillin and omeprazole at standard dose was not found to be effective as a second-line rescue therapy. The problem with quadruple therapy lies in the adverse side effects it provokes. We believe the search should continue for alternatives that are more comfortably administered and that are at least as effective, but with fewer adverse side effects.</p> <p>Trial Registration</p> <p>Current Controlled Trials ISRCTN81058036</p

    Waist circumference and risk of elevated blood pressure in children: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increasing childhood obesity has become a major health threat. This cross-sectional study reports associations between schoolchildren's waist circumference (WC) and risk of elevated blood pressure.</p> <p>Methods</p> <p>We measured height, weight, neck and waist circumference, and blood pressure in regular health examinations among children in grade 1 (ages 6-7 years) at six elementary schools in Taipei County, Taiwan. Elevated blood pressure was defined in children found to have mean systolic or diastolic blood pressure greater than or equal to the gender-, age-, and height-percentile-specific 95th-percentile blood pressure value.</p> <p>Results</p> <p>All 2,334 schoolchildren were examined (response rate was 100% in the six schools). The mean of systolic and diastolic blood pressure increased as WC quartiles increased (p < 0.0001). The prevalence of elevated blood pressure for boys and girls within the fourth quartile of waist circumference was 38.9% and 26.8%, respectively. In the multivariate logistic regression analyses, the adjusted odds ratios of elevated blood pressure were 1.78 (95% confidence interval [CI] = 1.13-2.80), 2.45 (95% CI = 1.56-3.85), and 6.03 (95% CI = 3.59-10.1) for children in the second, third, and fourth waist circumference quartiles compared with the first quartile. The odds ratios for per-unit increase and per increase of standard deviation associated with elevated blood pressure were 1.14 (95% CI = 1.10-1.18) and 2.22 (95% CI = 1.76-2.78), respectively.</p> <p>Conclusions</p> <p>Elevated blood pressure in children was associated with waist circumference. Not only is waist circumference easier to measure than blood pressure, but it also provides important information on metabolic risk. Further research is needed on effective interventions to identify and monitor children with increased waist circumference to reduce metabolic and blood pressure risks.</p

    Phylogenetic Distribution and Evolutionary History of Bacterial DEAD-Box Proteins

    Get PDF
    DEAD-box proteins are found in all domains of life and participate in almost all cellular processes that involve RNA. The presence of DEAD and Helicase_C conserved domains distinguish these proteins. DEAD-box proteins exhibit RNA-dependent ATPase activity in vitro, and several also show RNA helicase activity. In this study, we analyzed the distribution and architecture of DEAD-box proteins among bacterial genomes to gain insight into the evolutionary pathways that have shaped their history. We identified 1,848 unique DEAD-box proteins from 563 bacterial genomes. Bacterial genomes can possess a single copy DEAD-box gene, or up to 12 copies of the gene, such as in Shewanella. The alignment of 1,208 sequences allowed us to perform a robust analysis of the hallmark motifs of DEAD-box proteins and determine the residues that occur at high frequency, some of which were previously overlooked. Bacterial DEAD-box proteins do not generally contain a conserved C-terminal domain, with the exception of some members that possess a DbpA RNA-binding domain (RBD). Phylogenetic analysis showed a separation of DbpA-RBD-containing and DbpA-RBD-lacking sequences and revealed a group of DEAD-box protein genes that expanded mainly in the Proteobacteria. Analysis of DEAD-box proteins from Firmicutes and γ-Proteobacteria, was used to deduce orthologous relationships of the well-studied DEAD-box proteins from Escherichia coli and Bacillus subtilis. These analyses suggest that DbpA-RBD is an ancestral domain that most likely emerged as a specialized domain of the RNA-dependent ATPases. Moreover, these data revealed numerous events of gene family expansion and reduction following speciation

    Improving pulse crops as a source of protein, starch and micronutrients

    Get PDF
    Pulse crops have been known for a long time to have beneficial nutritional profiles for human diets but have been neglected in terms of cultivation, consumption and scientific research in many parts of the world. Broad dietary shifts will be required if anthropogenic climate change is to be mitigated in the future, and pulse crops should be an important component of this change by providing an environmentally sustainable source of protein, resistant starch and micronutrients. Further enhancement of the nutritional composition of pulse crops could benefit human health, helping to alleviate micronutrient deficiencies and reduce risk of chronic diseases such as type 2 diabetes. This paper reviews current knowledge regarding the nutritional content of pea (Pisum sativum L.) and faba bean (Vicia faba L.), two major UK pulse crops, and discusses the potential for their genetic improvement
    corecore