2,198 research outputs found

    Nonequilibrium and Parity Effects in the Tunneling Conductance of Ultrasmall Superconducting Grains

    Full text link
    Recent experiment on the tunneling spectra of ultrasmall superconducting grains revealed an unusual structure of the lowest differential conductance peak for grains in the odd charging states. We explain this behavior by nonequilibrium ``gapless'' excitations associated with different energy levels occupied by the unpaired electron. These excitations are generated by inelastic cotunneling.Comment: 4 pages, 2 .eps figures include

    Deep Chandra Observations of Abell 2199: the Interplay between Merger-Induced Gas Motions and Nuclear Outbursts in a Cool Core Cluster

    Full text link
    We present new Chandra observations of Abell 2199 that show evidence of gas sloshing due to a minor merger, as well as impacts of the radio source, 3C 338, hosted by the central galaxy, NGC 6166, on the intracluster gas. The new data are consistent with previous evidence of a Mach 1.46 shock 100" from the cluster center, although there is still no convincing evidence for the expected temperature jump. Other interpretations of this feature are possible, but none is fully satisfactory. Large scale asymmetries, including enhanced X-ray emission 200" southwest of the cluster center and a plume of low entropy, enriched gas reaching 50" to the north of the center, are signatures of gas sloshing induced by core passage of a merging subcluster about 400 Myr ago. An association between the unusual radio ridge and low entropy gas are consistent with this feature being the remnant of a former radio jet that was swept away from the AGN by gas sloshing. A large discrepancy between the energy required to produce the 100" shock and the enthalpy of the outer radio lobes of 3C 338 suggests that the lobes were formed by a more recent, less powerful radio outburst. Lack of evidence for shocks in the central 10" indicates that the power of the jet now is some two orders of magnitude smaller than when the 100" shock was formed.Comment: 17 pages, 20 figures, accepted for publication in Ap

    Zero-bias anomalies and boson-assisted tunneling through quantum dots

    Full text link
    We study resonant tunneling through a quantum dot with one degenerate level in the presence of a strong Coulomb repulsion and a bosonic environment. Using a real-time approach we calculate the spectral density and the nonlinear current within a conserving approximation. The spectral density shows a multiplet of Kondo peaks split by the transport voltage and boson frequencies. As a consequence we find a zero-bias anomaly in the differential conductance which can show a local maximum or minimum depending on the level position. The results are compared with recent experiments.Comment: 4 pages, revtex, 5 postscript figures, submitted to Phys. Rev. Let

    Transport properties and point contact spectra of Ni_xNb_{1-x} metallic glasses

    Full text link
    Bulk resistivity and point contact spectra of Ni_xNb_{1-x} metallic glasses have been investigated as functions of temperature (0.3-300K) and magnetic field (0-12T). Metallic glasses in this family undergo a superconducting phase transition determined by the Nb concentration. When superconductivity was suppressed by a strong magnetic field, both the bulk sample R(T) and the point contact differential resistance curves of Ni_xNb_{1-x} showed logarithmic behavior at low energies, which is explained by a strong electron - "two level system" coupling. We studied the temperature, magnetic field and contact resistance dependence of Ni_{44}Nb_{56} point-contact spectra in the superconducting state and found telegraph-like fluctuations superimposed on superconducting characteristics. These R(V) characteristics are extremely sensitive detectors for slow relaxing "two level system" motion.Comment: 4 pages, 5 figure

    Automatic MPI to AMPI Program Transformation Using Photran

    Full text link
    Abstract. Adaptive MPI, or AMPI, is an implementation of the Mes-sage Passing Interface (MPI) standard. AMPI benefits MPI applications with features such as dynamic load balancing, virtualization, and check-pointing. Because AMPI uses multiple user-level threads per physical core, global variables become an obstacle. It is thus necessary to con-vert MPI programs to AMPI by eliminating global variables. Manually removing the global variables in the program is tedious and error-prone. In this paper, we present a Photran-based tool that automates this task with a source-to-source transformation that supports Fortran. We eval-uate our tool on the multi-zone NAS Benchmarks with AMPI. We also demonstrate the tool on a real-world large-scale FLASH code and present preliminary results of running FLASH on AMPI. Both results show sig-nificant performance improvement using AMPI. This demonstrates that the tool makes using AMPI easier and more productive.

    Climate change promotes parasitism in a coral symbiosis.

    Get PDF
    Coastal oceans are increasingly eutrophic, warm and acidic through the addition of anthropogenic nitrogen and carbon, respectively. Among the most sensitive taxa to these changes are scleractinian corals, which engineer the most biodiverse ecosystems on Earth. Corals' sensitivity is a consequence of their evolutionary investment in symbiosis with the dinoflagellate alga, Symbiodinium. Together, the coral holobiont has dominated oligotrophic tropical marine habitats. However, warming destabilizes this association and reduces coral fitness. It has been theorized that, when reefs become warm and eutrophic, mutualistic Symbiodinium sequester more resources for their own growth, thus parasitizing their hosts of nutrition. Here, we tested the hypothesis that sub-bleaching temperature and excess nitrogen promotes symbiont parasitism by measuring respiration (costs) and the assimilation and translocation of both carbon (energy) and nitrogen (growth; both benefits) within Orbicella faveolata hosting one of two Symbiodinium phylotypes using a dual stable isotope tracer incubation at ambient (26 °C) and sub-bleaching (31 °C) temperatures under elevated nitrate. Warming to 31 °C reduced holobiont net primary productivity (NPP) by 60% due to increased respiration which decreased host %carbon by 15% with no apparent cost to the symbiont. Concurrently, Symbiodinium carbon and nitrogen assimilation increased by 14 and 32%, respectively while increasing their mitotic index by 15%, whereas hosts did not gain a proportional increase in translocated photosynthates. We conclude that the disparity in benefits and costs to both partners is evidence of symbiont parasitism in the coral symbiosis and has major implications for the resilience of coral reefs under threat of global change

    Coherent Resonant Tunneling Through an Artificial Molecule

    Full text link
    Coherent resonant tunneling through an artificial molecule of quantum dots in an inhomogeneous magnetic field is investigated using an extended Hubbard model. Both the multiterminal conductance of an array of quantum dots and the persistent current of a quantum dot molecule embedded in an Aharanov-Bohm ring are calculated. The conductance and persistent current are calculated analytically for the case of a double quantum dot and numerically for larger arrays using a multi-terminal Breit-Wigner type formula, which allows for the explicit inclusion of inelastic processes. Cotunneling corrections to the persistent current are also investigated, and it is shown that the sign of the persistent current on resonance may be used to determine the spin quantum numbers of the ground state and low-lying excited states of an artificial molecule. An inhomogeneous magnetic field is found to strongly suppress transport due to pinning of the spin-density-wave ground state of the system, and giant magnetoresistance is predicted to result from the ferromagnetic transition induced by a uniform external magnetic field.Comment: 23 pages, 12 figure

    Pairing in nuclear systems: from neutron stars to finite nuclei

    Full text link
    We discuss several pairing-related phenomena in nuclear systems, ranging from superfluidity in neutron stars to the gradual breaking of pairs in finite nuclei. We focus on the links between many-body pairing as it evolves from the underlying nucleon-nucleon interaction and the eventual experimental and theoretical manifestations of superfluidity in infinite nuclear matter and of pairing in finite nuclei. We analyse the nature of pair correlations in nuclei and their potential impact on nuclear structure experiments. We also describe recent experimental evidence that points to a relation between pairing and phase transitions (or transformations) in finite nuclear systems. Finally, we discuss recent investigations of ground-state properties of random two-body interactions where pairing plays little role although the interactions yield interesting nuclear properties such as 0+ ground states in even-even nuclei.Comment: 74 pages, 33 figs, uses revtex4. Submitted to Reviews of Modern Physic

    Meta-analysis of genome-wide association studies from the CHARGE consortium identifies common variants associated with carotid intima media thickness and plaque

    Get PDF
    Carotid intima media thickness (cIMT) and plaque determined by ultrasonography are established measures of subclinical atherosclerosis that each predicts future cardiovascular disease events. We conducted a meta-analysis of genome-wide association data in 31,211 participants of European ancestry from nine large studies in the setting of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. We then sought additional evidence to support our findings among 11,273 individuals using data from seven additional studies. In the combined meta-analysis, we identified three genomic regions associated with common carotid intima media thickness and two different regions associated with the presence of carotid plaque (P < 5 × 10 -8). The associated SNPs mapped in or near genes related to cellular signaling, lipid metabolism and blood pressure homeostasis, and two of the regions were associated with coronary artery disease (P < 0.006) in the Coronary Artery Disease Genome-Wide Replication and Meta-Analysis (CARDIoGRAM) consortium. Our findings may provide new insight into pathways leading to subclinical atherosclerosis and subsequent cardiovascular events
    corecore