10 research outputs found

    In situ Charakterisierung der viskoelastischen und elektrochemischen Eigenschaften von Poly(3,4-ethylendioxythiophen)

    Get PDF
    Poly(3,4-ethylendioxythiophen) (PEDOT) ist ein Kunststoff der zur Gruppe der intrinsisch leitfähigen Polymere (ILP) zählt. Aufgrund seiner chemischen und thermischen Stabilität findet er Verwendung in antistatischen Verkleidungen und als Elektrodenmaterial. PEDOT (und andere ILP) zeigen aufgrund ihrer Schaltbarkeit zwischen (reduzierten, ) neutralen und oxidierten Zuständen unterschiedliche Eigenschaften wie Leitfähigkeit, Farbe oder Viskoelastizität. Im Rahmen dieser Arbeit wurden die elektrochemischen und viskoelastischen Eigenschaften von PEDOT-Filmen untersucht. Dabei wurde die Quarzmikrowaage (QCM) in Verbindung mit potentiostatischen (Potentialsprung, PS) und potentiodynamischen (Cyclovoltammetrie, CV) elektrochemischen Methoden verwendet, so dass in situ elektrochemische und mechanische Eigenschaften der Filme zugänglich waren. Zur Bestimmung der viskoelastischen Eigenschaften wurde ein Auswertealgorithmus entwickelt, welcher auf ein mathematisches Modell zur Bestimmung des Schermoduls nach Efimov zurückgreift. Während der Herstellung wurden Parameter wie Lösungsmittel, Leitsalz, Vorpolarisations- und Abscheidungspotential variiert und die erhaltenen Filme bezüglich Schermodul und Morphologie charakterisiert. Es konnte gezeigt werden, dass die Elektrolytzusammensetzung einen entscheidenden Einfluss auf die viskoelastischen Eigenschaften der Filme besitzt, welche mit der Morphologie der Filme korrelieren. Des Weiteren wurden die Änderungen der viskoelastischen Eigenschaften dieser Filme untersucht, welche während dem elektronischen Schalten zwischen neutralem und oxidiertem Zustand aufgrund des Ionenaustausches erfolgen. CV- und PS-Experimente zeigten, dass die viskoelastischen Eigenschaften durch Konzentration und pH-Wert des Elektrolyten beeinflusst werden und in unterschiedlicher Weise auf die Potentialänderungen reagieren. Durch den Einbau von Magnetit-Partikeln in die Schichten konnten Hybridfilme erhalten werden, deren Eigenschaften durch das Anlegen eines äußeren Magnetfeldes beeinflusst werden können. Solche Filme zeigten in einem äußeren Magnetfeld (0,7T) höhere Schermodule und einen stark unterdrückten Ionenaustausch

    Electrodeposition of cuprous oxide on boron doped diamond electrodes

    Get PDF
    Nowadays, Cu_2O is very promising electrode material for photoelectrochemical applications. In this paper, we report on the controllable synthesis of Cu_2O single particles as well as compact layers on Boron Doped Diamond (BDD) electrodes using potentiostatic deposition in continuous and pulse mode. The BDD layers were prepared with different B/C ratios in the gas phase in order to investigate boron doping level influence on the Cu_2O properties. The effect of electrodeposition conditions such as deposition regime and pulse duration was investigated as well. The Cu_2O covered BDD electrodes were analysed by Scanning Electron Microscopy (SEM) and Raman spectroscopy. Improvement in the homogeneity of the electrodeposit and removal of clusters were achieved when the pulse potentiostatic regime was used. Using the same pulse electrodeposition parameters, we confirmed the possibility of controlling the deposition rate of Cu_2O by varying the BDD conductivity. Finally, we were able to scale the size of Cu_2O particles by changing the number of deposition pulses. The obtained results have shown a great potential of controlling the morphology, amount, size and distribution of Cu_2O films on BDD substrates by changing the boron doping level and electrodeposition conditions as well. The investigations reported herein allowed us to better understand the deposition mechanism of Cu_2O on BDD electrodes which could then be used for preparation of active layers for electrochemical applications and in optoelectronic devices such as solar cells and photodetectors

    In situ Charakterisierung der viskoelastischen und elektrochemischen Eigenschaften von Poly(3,4-ethylendioxythiophen)

    No full text
    Poly(3,4-ethylendioxythiophen) (PEDOT) ist ein Kunststoff der zur Gruppe der intrinsisch leitfähigen Polymere (ILP) zählt. Aufgrund seiner chemischen und thermischen Stabilität findet er Verwendung in antistatischen Verkleidungen und als Elektrodenmaterial. PEDOT (und andere ILP) zeigen aufgrund ihrer Schaltbarkeit zwischen (reduzierten, ) neutralen und oxidierten Zuständen unterschiedliche Eigenschaften wie Leitfähigkeit, Farbe oder Viskoelastizität. Im Rahmen dieser Arbeit wurden die elektrochemischen und viskoelastischen Eigenschaften von PEDOT-Filmen untersucht. Dabei wurde die Quarzmikrowaage (QCM) in Verbindung mit potentiostatischen (Potentialsprung, PS) und potentiodynamischen (Cyclovoltammetrie, CV) elektrochemischen Methoden verwendet, so dass in situ elektrochemische und mechanische Eigenschaften der Filme zugänglich waren. Zur Bestimmung der viskoelastischen Eigenschaften wurde ein Auswertealgorithmus entwickelt, welcher auf ein mathematisches Modell zur Bestimmung des Schermoduls nach Efimov zurückgreift. Während der Herstellung wurden Parameter wie Lösungsmittel, Leitsalz, Vorpolarisations- und Abscheidungspotential variiert und die erhaltenen Filme bezüglich Schermodul und Morphologie charakterisiert. Es konnte gezeigt werden, dass die Elektrolytzusammensetzung einen entscheidenden Einfluss auf die viskoelastischen Eigenschaften der Filme besitzt, welche mit der Morphologie der Filme korrelieren. Des Weiteren wurden die Änderungen der viskoelastischen Eigenschaften dieser Filme untersucht, welche während dem elektronischen Schalten zwischen neutralem und oxidiertem Zustand aufgrund des Ionenaustausches erfolgen. CV- und PS-Experimente zeigten, dass die viskoelastischen Eigenschaften durch Konzentration und pH-Wert des Elektrolyten beeinflusst werden und in unterschiedlicher Weise auf die Potentialänderungen reagieren. Durch den Einbau von Magnetit-Partikeln in die Schichten konnten Hybridfilme erhalten werden, deren Eigenschaften durch das Anlegen eines äußeren Magnetfeldes beeinflusst werden können. Solche Filme zeigten in einem äußeren Magnetfeld (0,7T) höhere Schermodule und einen stark unterdrückten Ionenaustausch

    In situ Charakterisierung der viskoelastischen und elektrochemischen Eigenschaften von Poly(3,4-ethylendioxythiophen)

    Get PDF
    Poly(3,4-ethylendioxythiophen) (PEDOT) ist ein Kunststoff der zur Gruppe der intrinsisch leitfähigen Polymere (ILP) zählt. Aufgrund seiner chemischen und thermischen Stabilität findet er Verwendung in antistatischen Verkleidungen und als Elektrodenmaterial. PEDOT (und andere ILP) zeigen aufgrund ihrer Schaltbarkeit zwischen (reduzierten, ) neutralen und oxidierten Zuständen unterschiedliche Eigenschaften wie Leitfähigkeit, Farbe oder Viskoelastizität. Im Rahmen dieser Arbeit wurden die elektrochemischen und viskoelastischen Eigenschaften von PEDOT-Filmen untersucht. Dabei wurde die Quarzmikrowaage (QCM) in Verbindung mit potentiostatischen (Potentialsprung, PS) und potentiodynamischen (Cyclovoltammetrie, CV) elektrochemischen Methoden verwendet, so dass in situ elektrochemische und mechanische Eigenschaften der Filme zugänglich waren. Zur Bestimmung der viskoelastischen Eigenschaften wurde ein Auswertealgorithmus entwickelt, welcher auf ein mathematisches Modell zur Bestimmung des Schermoduls nach Efimov zurückgreift. Während der Herstellung wurden Parameter wie Lösungsmittel, Leitsalz, Vorpolarisations- und Abscheidungspotential variiert und die erhaltenen Filme bezüglich Schermodul und Morphologie charakterisiert. Es konnte gezeigt werden, dass die Elektrolytzusammensetzung einen entscheidenden Einfluss auf die viskoelastischen Eigenschaften der Filme besitzt, welche mit der Morphologie der Filme korrelieren. Des Weiteren wurden die Änderungen der viskoelastischen Eigenschaften dieser Filme untersucht, welche während dem elektronischen Schalten zwischen neutralem und oxidiertem Zustand aufgrund des Ionenaustausches erfolgen. CV- und PS-Experimente zeigten, dass die viskoelastischen Eigenschaften durch Konzentration und pH-Wert des Elektrolyten beeinflusst werden und in unterschiedlicher Weise auf die Potentialänderungen reagieren. Durch den Einbau von Magnetit-Partikeln in die Schichten konnten Hybridfilme erhalten werden, deren Eigenschaften durch das Anlegen eines äußeren Magnetfeldes beeinflusst werden können. Solche Filme zeigten in einem äußeren Magnetfeld (0,7T) höhere Schermodule und einen stark unterdrückten Ionenaustausch

    Cross-diffusion effects on a morphochemical model for electrodeposition

    No full text
    We analyze the effects of cross-diffusion on pattern formation in a PDE reaction-diffusion system introduced in Bozzini et al. 2013 to describe metal growth in an electrodeposition process. For this morphochemical model - which refers to the physico-chemical problem of coupling of growth morphology and surface chemistry - we have found that negative cross-diffusion in the morphological elements as well as positive cross-diffusion in the sur- face chemistry produce larger Turing parameter spaces and favor a tendency to stripeness that is not found in the case without cross-diffusion. The impact of cross-diffusion on pat- tern selection has been also discussed by the means of a stripeness index. Our theoretical findings are validated by an extensive gallery of numerical simulations that allow to better clarify the role of cross-diffusion both on Turing parameter spaces and on pattern selec- tion. Experimental evidence of cross-diffusion in electrodeposition as well as a physico- chemical discussion of the expected impact of cross diffusion-controlled pattern formation in alloy electrodeposition processes complete the study

    PEDOT Coated Thick Film Electrodes for In Situ Detection of Cell Adhesion in Cell Cultures

    Get PDF
    Low temperature cofired ceramics (LTCC) provide a technology for the 3-dimensional integration of sensor arrays into bioreactors covering dimensions of several hundred micrometers. Since optical control in such assemblies is not possible, the in situ detection of cell adhesion on impedance electrodes with high spatial resolution would deliver crucial information. A current limitation is the increasing impedance of microelectrodes with decreasing diameter. This study evaluates the suitability of thick film gold electrodes, pristine and coated with electropolymerized poly(3,4-ethylenedioxythiophene) (PEDOT), for the detection of cell adhesion on the electrode surface. The impedance as criterion for cell attachment is measured with a recording system for electroactive cells with the aim of improving usability. Two cell cultures with different adhesion characteristic are used for adhesion assessment on planar test chips. The impedance increase measured on individual PEDOT coated electrodes due to tight contact of cells reaches a factor of 6.8 in cultures of well-adherent HepG2 cells. Less adhered NG108-15 cells produce a maximum impedance increase by a factor of 2.6. Since the electrode impedance is significantly reduced by PEDOT coating, a reduction of the electrode diameter to values below 100 µm and spatially resolved detection is possible. The results encourage further studies using PEDOT coated thick film electrodes as bio-electronic-interfaces. We presume that such miniaturized electrodes are suitable for 3-dimensional recordings in electroactive cell cultures, providing information of local cell adhesion at the same time

    Understanding the charge storage mechanism of conductive polymers as hybrid battery-capacitor material in ionic liquids by in-situ atomic force microscopy and electrochemical quartz crystal microbalance

    No full text
    Safe and sustainable energy storage systems with the ability to perform efficiently during large number of charge/discharge cycles with minimum degradation, define the main objectives of the near future energy storage technologies. Closing the gap between high power and energy per unit weight, demands new materials acting as battery and capacitor at the same time. Conductive polymers attracted attention as hybrid battery-capacitor material. However, their potential impact has not been fully investigated, as their behaviour, especially in non-aqueous electrolytes such as ionic liquids, is not completely understood. Here, we aim to clarify the fundamental functionality of the hybrid characteristics while studying the interaction between a conductive polymer and an ionic liquid by in-situ atomic force microscopy and electrochemical quartz crystal microbalance. The main achievement is the visualisation of morphological modifications of the conductive polymer depending on the state of charge. These modifications influence the viscoelastic material properties of the polymer, significantly. The combination of the findings provides a model, which is able to explain why conductive polymers behave like a (pseudo)-capacitor at a high and as battery at a low state of charge. This understanding enables the application-orientated synthesis and the use of conductive polymers as high-performance energy storage material
    corecore