39 research outputs found
Association analysis of ADPRT1, AKR1B1, RAGE, GFPT2 and PAI-1 gene polymorphisms with chronic renal insufficiency among Asian Indians with type-2 diabetes
<p>Abstract</p> <p>Background</p> <p>To determine association of nine single nucleotide polymorphisms (SNPs) in ADP ribosyltransferase-1 (ADPRT1), aldo-keto reductase family 1 member B1 (AKR1B1), receptor for advanced glycation end-products (RAGE), glutamine:fructose-6-phosphate amidotransferase-2 (GFPT2), and plasminogen activator inhibitor-1 (PAI-1) genes with chronic renal insufficiency (CRI) among Asian Indians with type 2 diabetes; and to identify epistatic interactionss between genes from the present study and those from renin-angiotensin-aldosterone system (RAAS), and chemokine-cytokine, dopaminergic and oxidative stress pathways (previously investigated using the same sample set).</p> <p>Methods</p> <p>Type 2 diabetes subjects with CRI (serum creatinine ≥3.0 mg/dl) constituted the cases (n = 196), and ethnicity and age matched individuals with diabetes for a duration of ≥ 10 years, normal renal functions and normoalbuminuria recruited as controls (n = 225). Allelic and genotypic constitution of 10 polymorphisms (SNPs) from five genes namely- <it>ADPRT1</it>, <it>AKR1B1, RAGE, GFPT2 </it>and <it>PAI-1 </it>with diabetic CRI was investigated. The genetic associations were evaluated by computation of odds ratio and 95% confidence interval. Multiple logistic regression analysis was carried out to correlate various clinical parameters with genotypes, and to study epistatic interactions between SNPs in different genes.</p> <p>Results</p> <p>Single nucleotide polymorphisms -429 T>C in <it>RAGE </it>and rs7725 C>T SNP in 3' UTR in <it>GFPT2 </it>gene showed a trend towards association with diabetic CRI. Investigation using miRBase statistical tool revealed that rs7725 in <it>GFPT2 </it>was a perfect target for predicted miRNA (hsa miR-378) suggesting the presence of the variant 'T' allele may result in an upregulation of GFPT2 contributing to diabetic renal complication. Epistatic interaction between SNPs in transforming growth factor <it>TGF-β1 </it>(investigated using the same sample set and reported elsewhere) and <it>GFPT2 </it>genotype was observed.</p> <p>Conclusions</p> <p>Association of SNPs in <it>RAGE </it>and <it>GFPT2 </it>suggest that the genes involved in modulation of oxidative pathway could be major contributor to diabetic chronic renal insufficiency. In addition, GFPT2 mediated overproduction of TGF-β1 leading to endothelial expansion and thereby CRI seems likely, suggested by our observation of a significant interaction between GFPT2 with TGF-β1 genes. Further, identification of predicted miRNA targets spanning the associated SNP in <it>GFPT2 </it>implicates the rs7725 SNP in transcriptional regulation of the gene, and suggests <it>GFPT2 </it>could be a relevant target for pharmacological intervention. Larger replication studies are needed to confirm these observations.</p
The Golgin GMAP210/TRIP11 Anchors IFT20 to the Golgi Complex
Eukaryotic cells often use proteins localized to the ciliary membrane to monitor the extracellular environment. The mechanism by which proteins are sorted, specifically to this subdomain of the plasma membrane, is almost completely unknown. Previously, we showed that the IFT20 subunit of the intraflagellar transport particle is localized to the Golgi complex, in addition to the cilium and centrosome, and hypothesized that the Golgi pool of IFT20 plays a role in sorting proteins to the ciliary membrane. Here, we show that IFT20 is anchored to the Golgi complex by the golgin protein GMAP210/Trip11. Mice lacking GMAP210 die at birth with a pleiotropic phenotype that includes growth restriction, ventricular septal defects of the heart, omphalocele, and lung hypoplasia. Cells lacking GMAP210 have normal Golgi structure, but IFT20 is no longer localized to this organelle. GMAP210 is not absolutely required for ciliary assembly, but cilia on GMAP210 mutant cells are shorter than normal and have reduced amounts of the membrane protein polycystin-2 localized to them. This work suggests that GMAP210 and IFT20 function together at the Golgi in the sorting or transport of proteins destined for the ciliary membrane
ERBB2 in Cat Mammary Neoplasias Disclosed a Positive Correlation between RNA and Protein Low Expression Levels: A Model for erbB-2 Negative Human Breast Cancer
Human ERBB2 is a proto-oncogene that codes for the erbB-2 epithelial growth factor receptor. In human breast cancer (HBC), erbB-2 protein overexpression has been repeatedly correlated with poor prognosis. In more recent works, underexpression of this gene has been described in HBC. Moreover, it is also recognised that oncogenes that are commonly amplified or deleted encompass point mutations, and some of these are associated with HBC. In cat mammary lesions (CMLs), the overexpression of ERBB2 (27%–59.6%) has also been described, mostly at the protein level and although cat mammary neoplasias are considered to be a natural model of HBC, molecular information is still scarce. In the present work, a cat ERBB2 fragment, comprising exons 10 to 15 (ERBB2_10–15) was achieved for the first time. Allelic variants and genomic haplotype analyses were also performed, and differences between normal and CML populations were observed. Three amino acid changes, corresponding to 3 non-synonymous genomic sequence variants that were only detected in CMLs, were proposed to damage the 3D structure of the protein. We analysed the cat ERBB2 gene at the DNA (copy number determination), mRNA (expression levels assessment) and protein levels (in extra- and intra protein domains) in CML samples and correlated the last two evaluations with clinicopathological features. We found a positive correlation between the expression levels of the ERBB2 RNA and erbB-2 protein, corresponding to the intracellular region. Additionally, we detected a positive correlation between higher mRNA expression and better clinical outcome. Our results suggest that the ERBB2 gene is post-transcriptionally regulated and that proteins with truncations and single point mutations are present in cat mammary neoplastic lesions. We would like to emphasise that the recurrent occurrence of low erbB-2 expression levels in cat mammary tumours, suggests the cat mammary neoplasias as a valuable model for erbB-2 negative HBC.POCI/CVT/62940/2004 and by the PhD grants (SFRH/BD/23406/2005 and SFRH/BD/31754/2006, of the Science and Technology Foundation (FCT) from Portugal
Household, community, sub-national and country-level predictors of primary cooking fuel switching in nine countries from the PURE study
Introduction. Switchingfrom polluting (e.g. wood, crop waste, coal)to clean (e.g. gas, electricity) cooking
fuels can reduce household air pollution exposures and climate-forcing emissions.While studies have
evaluated specific interventions and assessed fuel-switching in repeated cross-sectional surveys, the role
of different multilevel factors in household fuel switching, outside of interventions and across diverse
community settings, is not well understood. Methods.We examined longitudinal survey data from
24 172 households in 177 rural communities across nine countries within the Prospective Urban and
Rural Epidemiology study.We assessed household-level primary cooking fuel switching during a
median of 10 years offollow up (∼2005–2015).We used hierarchical logistic regression models to
examine the relative importance of household, community, sub-national and national-level factors
contributing to primary fuel switching. Results. One-half of study households(12 369)reported
changing their primary cookingfuels between baseline andfollow up surveys. Of these, 61% (7582)
switchedfrom polluting (wood, dung, agricultural waste, charcoal, coal, kerosene)to clean (gas,
electricity)fuels, 26% (3109)switched between different polluting fuels, 10% (1164)switched from clean
to polluting fuels and 3% (522)switched between different clean fuels