33 research outputs found

    Adaptation of Human Influenza Viruses to Swine

    Get PDF
    A large diversity of influenza A viruses (IAV) within the H1N1/N2 and H3N2 subtypes circulates in pigs globally, with different lineages predominating in specific regions of the globe. A common characteristic of the ecology of IAV in swine in different regions is the periodic spillover of human seasonal viruses. Such human viruses resulted in sustained transmission in swine in several countries, leading to the establishment of novel IAV lineages in the swine host and contributing to the genetic and antigenic diversity of influenza observed in pigs. In this review we discuss the frequent occurrence of reverse-zoonosis of IAV from humans to pigs that have contributed to the global viral diversity in swine in a continuous manner, describe host-range factors that may be related to the adaptation of these human-origin viruses to pigs, and how these events could affect the swine industry

    Airborne Transmission of Avian Origin H9N2 Influenza A Viruses in Mammals

    No full text
    Influenza A viruses (IAV) are widespread viruses affecting avian and mammalian species worldwide. IAVs from avian species can be transmitted to mammals including humans and, thus, they are of inherent pandemic concern. Most of the efforts to understand the pathogenicity and transmission of avian origin IAVs have been focused on H5 and H7 subtypes due to their highly pathogenic phenotype in poultry. However, IAV of the H9 subtype, which circulate endemically in poultry flocks in some regions of the world, have also been associated with cases of zoonotic infections. In this review, we discuss the mammalian transmission of H9N2 and the molecular factors that are thought relevant for this spillover, focusing on the HA segment. Additionally, we discuss factors that have been associated with the ability of these viruses to transmit through the respiratory route in mammalian species. The summarized information shows that minimal amino acid changes in the HA and/or the combination of H9N2 surface genes with internal genes of human influenza viruses are enough for the generation of H9N2 viruses with the ability to transmit via aerosol

    Antigenic mapping of the hemagglutinin of the H9 subtype influenza A viruses using sera from Japanese quail (<i>Coturnix c. japonica</i>)

    No full text
    Influenza A viruses (FLUAV) of the H9N2 subtype are zoonotic pathogens that cause significant economic damage to the poultry industry. Vaccination to prevent and control H9N2 infections in poultry is widely employed in the Middle East and Asia. We used phylogenetics and antigenic analysis to study the antigenic properties of the H9 hemagglutinin (HA) using sera produced in Japanese quail (Coturnix c. japonica). Consensus HA1 sequences were generated to capture antigenic diversity among isolates. We constructed chimeric H9N2 viruses containing the HA1 of each consensus sequence on a constant isogenic backbone. The resulting viruses were used to generate antisera from quail, a common and significant minor poultry species whose anti-HA response profiles remain poorly defined. Antigenic maps were generated by plotting the cross-hemagglutination inhibition (HI) data from the panel of quail sera against the chimeric constructs and 51 H9 field isolates. The chimeric antigens were divided into four different antigenic profiles (cyan, blue, orange, and red). Site-directed mutagenesis analysis showed nine amino acid positions of antigenic relevance. Substitutions at amino acid positions 149, 150, and 180 (H9 HA numbering) had relatively significant impact on HI activity using quail sera. Substitutions E180A and R131K/E180A led to the most significant antigenic change transitions. This study provides insights into the antigenic profile of H9 FLUAVs, with important implications for understanding antigenic drift and improving vaccine development for use in minor poultry species.IMPORTANCE:Determining the relevant amino acids involved in antigenic drift on the surface protein hemagglutinin (HA) is critical to understand influenza virus evolution and efficient assessment of vaccine strains relative to current circulating strains. We used antigenic cartography to generate an antigenic map of the H9 hemagglutinin (HA) using sera produced in one of the most relevant minor poultry species, Japanese quail. Key antigenic positions were identified and tested to confirm their impact on the antigenic profile. This work provides a better understanding of the antigenic diversity of the H9 HA as it relates to reactivity to quail sera and will facilitate a rational approach for selecting more efficacious vaccines against poultry-origin H9 influenza viruses in minor poultry species

    Changes in the Hemagglutinin and Internal Gene Segments Were Needed for Human Seasonal H3 Influenza A Virus to Efficiently Infect and Replicate in Swine

    No full text
    The current diversity of influenza A viruses (IAV) circulating in swine is largely a consequence of human-to-swine transmission events and consequent evolution in pigs. However, little is known about the requirements for human IAVs to transmit to and subsequently adapt in pigs. Novel human-like H3 viruses were detected in swine herds in the U.S. in 2012 and have continued to circulate and evolve in swine. We evaluated the contributions of gene segments on the ability of these viruses to infect pigs by using a series of in vitro models. For this purpose, reassortant viruses were generated by reverse genetics (rg) swapping the surface genes (hemagglutinin-HA and neuraminidase-NA) and internal gene segment backbones between a human-like H3N1 isolated from swine and a seasonal human H3N2 virus with common HA ancestry. Virus growth kinetics in porcine intestinal epithelial cells (SD-PJEC) and in ex-vivo porcine trachea explants were significantly reduced by replacing the swine-adapted HA with the human seasonal HA. Unlike the human HA, the swine-adapted HA demonstrated more abundant attachment to epithelial cells throughout the swine respiratory tract by virus histochemistry and increased entry into SD-PJEC swine cells. The human seasonal internal gene segments improved replication of the swine-adapted HA at 33 &deg;C, but decreased replication at 40 &deg;C. Although the HA was crucial for the infectivity in pigs and swine tissues, these results suggest that the adaptation of human seasonal H3 viruses to swine is multigenic and that the swine-adapted HA alone was not sufficient to confer the full phenotype of the wild-type swine-adapted virus

    A138S does not affect histopathological findings in tracheas and lung lobes of infected pigs.

    No full text
    Representative photomicrographs of trachea and lung sections of seeder pigs at 5 dpi, H&E, 10X. Mock group showing normal tissue sections. hVIC/11 group, trachea: epithelium was diffusely sloughing into the lumen (arrow) with a mild-moderate suppurative inflammation in the submucosal glands (asterisk). Lung: mild-moderate degree of suppurative bronchitis and bronchiolitis were present (asterisks). hVIC/11A138S group, trachea: mild-moderate lymphohistiocytic inflammation expanded the lamina propria and effaced the mucosal epithelium. Lung: mild suppurative and catarrhal bronchitis and bronchiolitis (asterisks) were present with mild lymphohistiocytic cuffing of the airway. sOH/04 group, trachea: mild lymphohistiocytic tracheitis (arrow) was present. Lung: marked suppurative inflammation in the airways (asterisks)and adjacent alveoli.</p
    corecore