222 research outputs found

    Governing stem cell therapy in India: regulatory vacuum or jurisdictional ambiguity?

    Get PDF
    Stem cell treatments are being offered in Indian clinics although preclinical evidence of their efficacy and safety is lacking. This is attributed to a governance vacuum created by the lack of legally binding research guidelines. By contrast, this paper highlights jurisdictional ambiguities arising from trying to regulate stem cell therapy under the auspices of research guidelines when treatments are offered in a private market disconnected from clinical trials. While statutory laws have been strengthened in 2014, prospects for their implementation remain weak, given embedded challenges of putting healthcare laws and professional codes into practice. Finally, attending to the capacities of consumer law and civil society activism to remedy the problem of unregulated treatments, the paper finds that the very definition of a governance vacuum needs to be reframed to clarify whose rights to health care are threatened by the proliferation of commercial treatments and individualized negligence-based remedies for grievances

    Pecking order theory versus trade-off theory : are service SMEs’ capital structure decisions different?

    Get PDF
    This paper seeks to analyse if the capital structure decisions of service small and medium-sized enterprises (SMEs) are different from those of other types of firm. To do so, we consider four research samples: (i) 610 service SMEs; (ii) 126 service large firms; (iii) 679 manufacturing and construction SMEs; and (iv) 132 manufacturing and construction large firms. Using the two-step estimation method, the empirical evidence obtained in this study shows that the capital structure decisions of service SMEs are different from those of other types of firm. Service SMEs’ capital structure decisions are closer to the assumptions of Pecking Order Theory and further removed from those of Trade-Off Theory compared with the case of other types of firm

    Hyperpolarized 13C MRI: Path to Clinical Translation in Oncology.

    Get PDF
    This white paper discusses prospects for advancing hyperpolarization technology to better understand cancer metabolism, identify current obstacles to HP (hyperpolarized) 13C magnetic resonance imaging's (MRI's) widespread clinical use, and provide recommendations for overcoming them. Since the publication of the first NIH white paper on hyperpolarized 13C MRI in 2011, preclinical studies involving [1-13C]pyruvate as well a number of other 13C labeled metabolic substrates have demonstrated this technology's capacity to provide unique metabolic information. A dose-ranging study of HP [1-13C]pyruvate in patients with prostate cancer established safety and feasibility of this technique. Additional studies are ongoing in prostate, brain, breast, liver, cervical, and ovarian cancer. Technology for generating and delivering hyperpolarized agents has evolved, and new MR data acquisition sequences and improved MRI hardware have been developed. It will be important to continue investigation and development of existing and new probes in animal models. Improved polarization technology, efficient radiofrequency coils, and reliable pulse sequences are all important objectives to enable exploration of the technology in healthy control subjects and patient populations. It will be critical to determine how HP 13C MRI might fill existing needs in current clinical research and practice, and complement existing metabolic imaging modalities. Financial sponsorship and integration of academia, industry, and government efforts will be important factors in translating the technology for clinical research in oncology. This white paper is intended to provide recommendations with this goal in mind

    Hyperpolarized <sup>13</sup>C MRI: Path to Clinical Translation in Oncology

    Get PDF
    This white paper discusses prospects for advancing hyperpolarization technology to better understand cancer metabolism, identify current obstacles to HP (hyperpolarized) 13C magnetic resonance imaging’s (MRI’s) widespread clinical use, and provide recommendations for overcoming them. Since the publication of the first NIH white paper on hyperpolarized 13C MRI in 2011, preclinical studies involving [1-13C]pyruvate as well a number of other 13C labeled metabolic substrates have demonstrated this technology's capacity to provide unique metabolic information. A dose-ranging study of HP [1-13C]pyruvate in patients with prostate cancer established safety and feasibility of this technique. Additional studies are ongoing in prostate, brain, breast, liver, cervical, and ovarian cancer. Technology for generating and delivering hyperpolarized agents has evolved, and new MR data acquisition sequences and improved MRI hardware have been developed. It will be important to continue investigation and development of existing and new probes in animal models. Improved polarization technology, efficient radiofrequency coils, and reliable pulse sequences are all important objectives to enable exploration of the technology in healthy control subjects and patient populations. It will be critical to determine how HP 13C MRI might fill existing needs in current clinical research and practice, and complement existing metabolic imaging modalities. Financial sponsorship and integration of academia, industry, and government efforts will be important factors in translating the technology for clinical research in oncology. This white paper is intended to provide recommendations with this goal in mind

    Bioprospecting the African Renaissance: The new value of muthi in South Africa

    Get PDF
    This article gives an overview of anthropological research on bioprospecting in general and of available literature related to bioprospecting particularly in South Africa. It points out how new insights on value regimes concerning plant-based medicines may be gained through further research and is meant to contribute to a critical discussion about the ethics of Access and Benefit Sharing (ABS). In South Africa, traditional healers, plant gatherers, petty traders, researchers and private investors are assembled around the issues of standardization and commercialization of knowledge about plants. This coincides with a nation-building project which promotes the revitalization of local knowledge within the so called African Renaissance. A social science analysis of the transformation of so called Traditional Medicine (TM) may shed light onto this renaissance by tracing social arenas in which different regimes of value are brought into conflict. When medicinal plants turn into assets in a national and global economy, they seem to be manipulated and transformed in relation to their capacity to promote health, their market value, and their potential to construct new ethics of development. In this context, the translation of socially and culturally situated local knowledge about muthi into global pharmaceuticals creates new forms of agency as well as new power differentials between the different actors involved

    Life, time, and the organism:Temporal registers in the construction of life forms

    Get PDF
    In this paper, we articulate how time and temporalities are involved in the making of living things. For these purposes, we draw on an instructive episode concerning Norfolk Horn sheep. We attend to historical debates over the nature of the breed, whether it is extinct or not, and whether presently living exemplars are faithful copies of those that came before. We argue that there are features to these debates that are important to understanding contemporary configurations of life, time and the organism, especially as these are articulated within the field of synthetic biology. In particular, we highlight how organisms are configured within different material and semiotic assemblages that are always structured temporally. While we identify three distinct structures, namely the historical, phyletic and molecular registers, we do not regard the list as exhaustive. We also highlight how these structures are related to the care and value invested in the organisms at issue. Finally, because we are interested ultimately in ways of producing time, our subject matter requires us to think about historiographical practice reflexively. This draws us into dialogue with other scholars interested in time, not just historians, but also philosophers and sociologists, and into conversations with them about time as always multiple and never an inert background
    • …
    corecore