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Making big promises come true? Articulating and realizing the value of 

synthetic biology 

 

Abstract 

Synthetic biology is an emerging approach to biotechnology that strives to use engineering 

principles and practices to design and make new organisms. Proponents of synthetic biology have 

big aspirations for this field, citing potential for an industrial revolution in biotechnology. This 

paper is concerned with how value is being negotiated and constituted through practice in 

synthetic biology — through the promises being made, through the objects and products being 

produced, through the initiatives and institutions being established, and through the working 

practices and justificatory strategies of synthetic biologists. In particular, I focus on negotiations 

surrounding the making, use, and circulation of BioBrickTM standard biological parts. BioBricks 

are presented as tools that will make genetic engineering more efficient and reliable, and are 

accompanied by a particular imagination of innovation and value creation in synthetic biology. 

But exploring valuation practices in action reveals a number of sites of ambivalence and 

contestation over the BioBrick approach to synthetic biology. Through a series of vignettes, I 

show how these negotiations over the promises and practices surrounding BioBricks are 

configuring the epistemic foundations and design space of the field, and are helping to define 

what value means in synthetic biology. 

 

Keywords   biocapital; BioBricks; moral economy; standards; synthetic biology; value 
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Introduction 

 

Synthetic biology has been gaining visibility over the past decade as an approach to 

biotechnology that strives to use engineering principles and practices in order to design and make 

new organisms (Endy, 2005; Heinemann & Panke, 2006). Engineering-based approaches to 

studying and designing life can be traced throughout the 20th century (see Campos, 2010; Pauly, 

1987). This particular iteration emphasizes goals of design, control and predictability in the 

design of useful biological systems. It takes as a starting point the advances made in molecular 

biology and industrial biotechnology over the past 30-40 years, in particular the development of 

recombinant DNA technologies for excising and shuffling genetic sequences. Improvements in 

the efficiency and accuracy of DNA sequencing have led to the rapid accumulation of genetic 

sequence information about many living organisms in public databases. Parallel advances in 

DNA synthesis technology mean that the ability not just to ‘read’ but also to ‘write’ DNA is 

increasing rapidly. This shift from reading DNA sequences to writing and composing them is 

presented as central to the engineering ethos of synthetic biology. 

 

This paper focuses on the so-called ‘parts-based’ approach to synthetic biology,1 which first 

began to be articulated by a small group of US-based researchers in funding proposals and papers 

10-15 years ago (e.g. Arkin and Endy, 1999). Proponents of this approach state a concern with 

wanting to manage (or ‘black-box’) the complexity of living organisms by decomposing their 

genomes into standardized genetic ‘parts’ that have predictable properties, and in turn using these 

parts to design new (micro-)organisms with specified properties. Commonly cited examples 

                                                 
1 A number of different core pursuits are identified under the heading of synthetic biology, including DNA ‘parts-
based’ approaches, whole-genome engineering, and protocell work (O’Malley et al, 2008). 
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include engineering algae to produce biofuels (Service, 2011), or using yeast as ‘factories’ for the 

production of antimalarial drugs (Ro et al, 2006). Parts-based synthetic biology advances an 

imagination of DNA as text or code that can be composed and (re-)written for instrumental ends. 

Rather than simply studying, mapping or representing biological processes, practitioners are 

explicitly application-oriented and focus on creating new living entities for useful purposes. 

Furthermore, they are concerned with creating life that performs according to certain metrics or 

rules; life in which complexity and emergence can be managed, and in which evolution is 

brought under control. As a means to this end, they propose breaking down the genomes of living 

organisms into component ‘parts’ associated with defined functions.  

 

Through practices of isolation, measurement, standardization, and reconfiguration, these 

biological parts become dissociated from their species provenance and evolutionary histories. A 

key aim of these efforts is to disentangle genetic material from its biological context so as to 

facilitate the flow of genetic information across space, time, and organisms, to enable entry into 

new systems of biological production or “circuits of vitality” (Rose, 2007: 15). Like many 

genomics-related endeavours, synthetic biology straddles both biological science and information 

science, in this case also introducing discourse from engineering and design (Mackenzie, 2010). 

Compared with several core studies of biocapital and biopolitics (e.g. Cooper, 2008; Rose, 2007; 

Sunder Rajan, 2006), synthetic biology orients our attention towards the molecular and 

particularly the micro-organismal facets of modern biotechnology, and encourages us to consider 

materiality and the implications of conceptualizing biological (micro-)organisms as substrates for 

engineering practice (Helmreich, 2008). 
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Synthetic biology is in its early stages, rich with promises and yet still facing numerous 

challenges and uncertainties. Its practitioners aspire to revolutionize biotechnology, and to realize 

this promise they are working to redirect knowledge, life, and labour into new cycles of 

production, circulation and wealth creation. As well as proposing to refactor the material basis of 

biological production through the development of standardized and well-characterized genetic 

components, synthetic biologists see the complementary reorganizing and restructuring of work 

practices in the life sciences as necessary for harnessing biological potential to the fullest. In this 

paper I consider how value in (and the value of) synthetic biology is being constituted and 

negotiated, through the making (and re-making) of BioBrickTM standard biological parts. Rather 

than assume a stable or uncontested definition of value, I focus on actions and practices of 

valuation in synthetic biology – treating value not as a noun but as a verb, to value (Muniesa 

2012). What is seen as worth knowing, and to what ends? How is value being constituted in 

synthetic biology, and how are valuation practices shaping this nascent field? To explore these 

questions, I draw on material gathered from synthetic biology reports, articles and websites, a 

small number of interviews conducted in 2009 with self-identified synthetic biologists in Europe 

and the United States, and participant-observation at over a dozen synthetic biology meetings, 

workshops, and conferences.2 Similar to a forthcoming volume by Dussauge et al, this paper 

explores valuation practices with reference to a growing body of literature on biocapital and on 

moral economies in contemporary life sciences. I trace the active constitution and contestation of 

value in synthetic biology through the promises being made, through the production of biological 

objects such as BioBricks, through the initiatives and infrastructure being established, and 

through the working practices and justificatory strategies of synthetic biologists. This work is 

                                                 
2 It should be noted that I have helped to organize some of these events, in my role as one of the coordinators of a 
research network in synthetic biology (the UK Synthetic Biology Standards Network, which was funded from 2008–
2011 by four of the UK Research Councils). 
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narrated through a co-productionist lens (Jasanoff, 2004), focusing on the simultaneous 

constitution of the material and social worlds of synthetic biology, and the entangled practices of 

knowledge-making and valuation in discipline formation. 

 

A proposal for BioBrickTM standard biological parts 

 

The BioBrickTM standard biological part is sometimes referred to as a ‘poster child’ for synthetic 

biology; it is a tangible example of the way in which synthetic biologists are attempting to bring 

engineering concepts and an engineering mindset to biology, with the aim of codifying biological 

knowledge and “transform[ing] the field of biology into an engineering discipline.”3 The 

BioBrick was first proposed by Tom Knight (2002), a senior computer scientist based in the 

Department of Electrical Engineering and Computer Science at the Massachusetts Institute of 

Technology (MIT). Explicitly compared with Lego® bricks, BioBrick parts are DNA sequences 

(encoding known functions) that have been designed in a standardized format to allow their 

combinatorial assembly into genetic ‘circuits’. The word designed is crucial. Although BioBricks 

contain genetic elements that have been studied and used for decades in molecular biology and 

genetics research,4 the idea of designing these elements in a highly specified and standardized 

way to create modular, interchangeable, and idempotent5 parts that can be assembled into genetic 

circuits using automated protocols seems to be an innovative proposal. One experienced 

molecular biologist who runs a laboratory in a cell biology institute described his introduction to 

the BioBrick as follows:  

                                                 
3 http://intranet.synberc.org/about (accessed 29 July 2013) 
4 Such genetic elements include for example promoters, terminators, gene-coding sequences, and ribosome binding 
sites. 
5 Idempotent: not changed in value following multiplication by itself (Collins English Dictionary, 6th Edition). 

http://intranet.synberc.org/about
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…it took me a while to get my head around the concept of BioBricks, so I really, when I 

went to the first meeting I didn’t understand at all how it was supposed to work. But once 

they explained it, it was like [snaps fingers] ‘Why didn’t I ever think of that, that’s 

absolutely brilliant!’ (synthetic biologist 3) 

 

The BioBrick proposal aims to exploit what some biologists describe as the intrinsic or natural 

modularity of biological signalling and decision-making systems (Agapakis and Silver, 2009; 

Hartwell et al, 1999; Lim, 2010). Drawing analogies with man-made modular systems such as 

computers and electrical circuits, BioBricks are presented as foundational components of a 

biological abstraction hierarchy in which modular component ‘parts’ can be combined into larger 

biological ‘devices’ or ‘systems’ that are incorporated into different host organisms (‘chassis’) to 

carry out defined and predictable functions (Endy, 2005; Campos, 2012). One explicitly 

articulated motivation for working to such a structured scheme is to overcome what some see as 

the “ad hoc” (Knight et al, 2003: 2) or even the “medieval craft” nature of molecular biology 

(synthetic biologist 1), and to allow biological engineering to become more routine, standardized, 

and predictable than existing practices in biotechnology.  

 

BioBricks are thus presented as tools that will make genetic engineering more efficient. Early 

agenda-setting documents propose a set of desired specifications for these biological parts. First, 

the parts should be modular in structure, containing standardized interfaces. Second, parts should 

be easy and efficient to assemble. Designing and assembling DNA constructs can be time-

consuming tasks: Drew Endy speculates that “a practicing experimental biologist or biological 
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engineer can easily spend around 50% of their effort manipulating the DNA just to produce the 

genetic material needed for an experiment” (Endy, 2005: 452). Accordingly, Tom Knight’s 

BioBrick design is tightly coupled to a specific method for assembling biological parts, and is 

proposed as a way to improve the automation of DNA assembly, and to circumvent the “tedium 

and surprise” (Knight et al, 2003: 2) associated with preparing DNA constructs. Third, biological 

parts should be well characterized. In an early research proposal, Arkin and Endy (1999: 3) 

discuss the need to define and measure the “device physics” for individual biological parts: “each 

of the components must be sufficiently biochemically characterized such that their behaviour in a 

larger circuit may be predicted.” 

 

Alongside such seemingly technical specifications, the idea of standard biological parts is also 

articulated in relation to a set of broader visions and expectations about the future of synthetic 

biology. BioBricks are presented as more than a technical solution to a limitation in the efficiency 

of DNA assembly, but also as foundational elements of a new, engineering-led approach to 

biology that will enable biological potential to be harnessed for the development of new products 

and applications. In this vision, developing standardized parts becomes firmly aligned with 

aspirations about the utility, scaling up, and industrialization of bioengineering — the ambition is 

‘big’ in terms of projected scale, scope, and profit. Proponents of synthetic biology tout the 

possibility of a new ‘industrial revolution’ in biotechnology (e.g. Kitney, 2009), identifying great 

potential for parts-based bioengineering to deliver useful (and profitable) applications in areas as 

diverse as (bio)manufacturing, medical diagnostics and therapeutics, and environmental 

biosensing and bioremediation. Furthermore, policy reports sometimes frame this approach as 

imperative for meeting key challenges of the 21st century: “the ability not only to understand, but 
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also to modify and construct biological systems will be essential if we are to apply the power of 

biology to diverse environmental, energy, and health problems” (National Academies of Science, 

2009: 63).  Comparisons are regularly made between the availability of standard biological parts 

and the Industrial Revolution of the 19th century:  

 

…the standardization of pitch, diameter, and form of screw threads [provided] the 

infrastructure which allowed the industrial revolution to take off…We anticipate 

advantages similar to those which accompany the standardization of screw threads in 

mechanical design — the widespread ability to interchange parts, to assemble sub-

components, to outsource assembly to others, and to rely extensively on previously 

manufactured components (Knight et al, 2003: 2). 

 

Such statements start to invoke a particular imagination of innovation in synthetic biology. 

Technical characteristics of BioBricks (like standardized interfaces) become associated with 

broader market logic for the production, circulation, and use of these parts. The goal of 

developing predictable, reliable circuits at the molecular or genetic level is transposed to the scale 

of product innovation — creating repositories of standardized, modular and well-characterized 

biological parts is projected to facilitate innovation and value generation in synthetic biology. 

The revolutionary rhetoric associated with synthetic biology typically describes its potential in 

diffuse and future-oriented terms (lots of profit stands to be made by many innovators). It is a 

vision broadly consistent with post-Fordist logic of flexible accumulation (Harvey, 1990).  
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Importantly, there is a perceived collective value (O’Connell, 1993: 133-136) to be derived from 

the wider circulation and use of BioBricks, promoting their incorporation into new and useful 

biological devices. The idea that a single part might be re-used in the construction of multiple, 

different genetic circuits is central to the BioBrick (and thus warrants the effort involved in 

systematically measuring and characterizing part behaviour). The technical datasheet that 

accompanied Tom Knight’s original distribution of BioBrick parts proposes that “much of the 

power of these assembly techniques arise [sic] from a consistent, widely available set of 

components” (Knight, 2002: 1). Furthermore, from the outset we see ideas of re-use formulated 

in terms of the open sharing of parts: “we strongly encourage others who develop components in 

this form to contact us with complete information and samples, if possible. We volunteer to act as 

a community coordination and distribution point for these components” (Knight, 2002: 1). 

 

The distributed production and assembly of biological parts is suggested as a key benefit of 

defining standards for BioBrick design (Shetty et al, 2008: 2). References to efficiency, 

economies of scope and scale, and more flexible, distributed innovation feature routinely in 

reports and articles on synthetic biology. One of the stated goals of developing modular 

biological parts is to facilitate the ‘decoupling’ of design and fabrication processes in biological 

engineering. Endy suggests that this stands to have desirable consequences for the division of 

labour in a multidisciplinary endeavour like synthetic biology, for “each group need only be 

expert in their respective tasks” (Endy, 2005: 451). Synthetic biology is sometimes discussed in 

terms of ‘de-skilling’ (Schmidt, 2008) or even ‘democratizing’ biotechnology (Billings and Endy, 

2008), opening the door for new researchers, practitioners and hobbyists to enter the world of 

biological engineering. 
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In volunteering his research group to act as a community coordination point, Tom Knight clearly 

imagined that there would be a community of users who would recognize the proposed value of 

standard biological parts for their research, and who would commit to developing and 

contributing new biological parts to a common repository. Drawing analogies with open-source 

software (regarding both intellectual property protection and ideas about distributed innovation), 

early proponents of the BioBrick have been keen to promote the free and open sharing of 

biological parts. As individual biological parts typically have low value, the logic goes, there is 

little point in restricting access to them — promises of commodification and value generation in 

synthetic biology lie further downstream, in the combination of parts into biological devices and 

systems with useful properties. 

 

In summary, the idea of the BioBrick standard biological part — and indeed synthetic biology 

more generally — can be said to relate to the organization of scientific practice as much as it does 

to a particular understanding of how biology works. Built into the technical specifications for 

BioBrick parts (modularity, easy assembly, predictable function, reusability) are ambitions about 

how biological parts might be produced, circulated, and (re-)used to facilitate innovation.  

Synthetic biologists propose to use engineering principles and material artefacts like BioBricks as 

a basis for reorganizing the biotechnology landscape, so as to overcome current limits to 

biocapital and generate new and diverse sources of wealth. In this context, we see that the 

disentangling of genetic parts from their biological context, and their standardization and 

characterization in BioBrick form, is associated with a promised multiplication in the value of 

this genetic material for the bioeconomy. Calvert (2008) argues that the practices involved in 
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isolating and formatting genetic sequences as BioBricks makes them well suited to 

commodification and appropriation regimes (be they open-source or more proprietary 

mechanisms). In such promissory formulations, the epistemic and market success of synthetic 

biology become coupled to the availability of standardized and characterized biological 

components, as well as tools for designing, assembling, and testing genetic circuits.  

 

Negotiating value in/of synthetic biology 

 

Since the first distribution of BioBrick parts to a small number of research laboratories in the 

United States in 2002, a highly interdisciplinary and international community of researchers has 

been forming around the ‘parts-based’ approach to synthetic biology (Molyneux-Hodgson & 

Meyer, 2009). Early proponents of BioBricks have been working to establish initiatives including 

open-access repositories of biological parts (such as the Registry of Standard Biological Parts, 

founded at MIT), tailored intellectual property agreements for sharing BioBrick parts, community 

standard-setting mechanisms for developing the technical basis of the field, and not-for-profit 

organizations to promote synthetic biology. At the moment, most of these efforts are small in 

scale, experimental in nature, and operate with minimal funding. Furthermore, they are being 

developed against a wealth of established infrastructure in engineering and the life sciences. 

Taken together, these initiatives are trying to delineate a space both for the establishment of a 

technical platform for synthetic biology, and for the development of a community of practitioners 

with common professional identities revolving around collectively owned concepts and materials 

like the BioBrick (e.g. Kelty, 2012).6 

                                                 
6 See Kohler, 1994, for an account of the moral economy developed by genetics researchers using Drosophila as a 
shared model organism. 
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As an increasingly heterogeneous ‘community’ of synthetic biologists begins to form around this 

parts-based approach, they are simultaneously negotiating both the technical characteristics of 

biological parts and the social world of synthetic biology. What design should BioBrick parts 

have to maximize the design space for bioengineering? What does it mean to characterize a part 

so that someone else can pick it up off the shelf and use it in their own biological system? Is there 

(sufficient) demand for the re-use of parts? These are questions that concern the constitution of 

both knowledge and value in synthetic biology. They interweave understandings of the biological 

systems being engineered with choices about the desired future of the field. They are being (re-) 

articulated and (re-)negotiated as new stakeholders join the community, as knowledge about 

biological systems deepens, and as the broader market and societal value of synthetic biology is 

debated.  

 

In what follows, I present a series of short vignettes derived from interviews, reports, and 

ethnographic fieldwork that begin to tease out a number of tensions emerging as the value of 

synthetic biology is being defined in practice. In particular, we see contrasts between the 

revolutionary and somewhat homogenizing rhetoric of standardization in synthetic biology, and 

an observed diversity in the local practices, understandings, and imaginations of researchers. 

What we encounter might be described in terms of tensions arising from the performance of ‘a 

flank movement’ in valuation (Muniesa, 2012) — instances where the difference in meaning of 

value as a noun and valuation as a verb come to the fore. In contrast to the future-oriented 

ambitions outlined in the previous section, these vignettes highlight the value of synthetic biology 

not as a static or pre-determined property of the technology, but as a contested and contingent 
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attribution that is always in-the-making. Tensions are revealed through an ongoing dialectic 

between the projected value(s) of synthetic biology as a fixed attribute, and the present-day 

practices of valuation that are shaping the field. In the examples that follow, we see the complex 

intertwining of epistemic, academic, ethical, and market values that researchers are negotiating 

while trying to establish synthetic biology as a discipline.  

 

Negotiating epistemic value through BioBrick design 

 

Synthetic biology offers a rich case study for exploring the negotiation of epistemic value, as 

engineers, biologists and computer scientists come together in an attempt to determine whether 

and how engineering principles and practices might be applied to the design of living systems. 

One particularly clear site where epistemic dimensions of value are being contested relates to 

debates over BioBrick design standards. Although many synthetic biologists see the general 

principles underpinning BioBrick design as innovative and potentially useful (whether their prior 

training is in engineering or biological sciences), they have repeatedly clashed over how much 

biological knowledge is necessary in order to develop an ‘appropriate’ BioBrick design. Since the 

initial design standard for BioBrick parts was proposed (Knight et al, 2003; Knight, 2007), 

researchers from a number of laboratories in the US and Europe have advanced alternative 

standards.7 (See Campos, 2012, for a historical account of the micropolitics underpinning 

BioBrick standards development.) Within the growing community of practice, many see the 

original BioBrick standard (known as the BBa or RFC10 standard) as inherently flawed and as 

                                                 
7 The precise number of alternative standards proposed depends on exactly how one defines the standard, but at least 
six variations on the original BioBrick design have been formally proposed by individuals and laboratories in the US 
and Europe. 
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constraining the design space for synthetic biology. This technical ‘flaw’ in BioBrick design 

could be spotted immediately by experienced molecular biologists: 

 

…I think that, it’s quite a typical thing that the MIT folk, they do very nice conceptual 

work but they are not necessarily having their hands deep down in the, uh, in the 

biological side of implementation. I mean a lot of those people are coming from computer 

science, and Tom Knight himself also comes from other engineering areas, so uh, a lot of 

people looking at this thing, like molecular biologists would look at it and say ‘Come on! 

Why did you do that?’ It’s obvious that you should do it in another way to allow protein 

fusions, because that’s a typical task that a lot of people do, and they just didn’t think 

about it basically. Or didn’t think of it. (synthetic biologist 4) 

 

This comment comes from a postdoctoral researcher explaining to me that he didn’t even have to 

try using the BBa standard to see that it wouldn’t work for his research; he could see just from 

looking at the design on paper that it was inappropriate for his needs. Such examples highlight 

the different epistemic commitments of synthetic biologists as they set about making and using 

BioBrick parts. In practice (and unsurprisingly to those trained in molecular biology), it turns out 

that the design specifications of a BioBrick (in this case, the specific sequences of its DNA 

‘prefix’ and ‘suffix’ regions) affect its biological properties, and that this has functional 

consequences for synthetic biologists who bring different research interests to the field, or who 

work with different model organisms. It seems that the engineers who first proposed the BioBrick 

didn’t (or perhaps couldn’t?) imagine the variety of purposes to which more biologically inclined 

researchers might be disposed to use them. And that the initially imagined value of the BioBrick 
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– advanced as a general tool for all researchers and across the spectrum of molecular 

biotechnology work – is being recalibrated by researchers with different epistemic aims. The 

general idea of a standardized biological part does seem to have wide appeal, but precisely what 

constitutes a valuable design is still a matter of contention within the synthetic biology 

community (Mackenzie el al, 2013).  

 

Such tensions between the push to develop ‘universal’ standards and the need to be sensitive to 

local research questions and practices are commonplace when it comes to standards development 

(see e.g. Fujimura, 1987; Jordan and Lynch, 1992 for examples in molecular biology practice). 

One consequence for synthetic biology is that many individual researchers or laboratories are 

now developing their own collections of biological parts — in formats often incompatible with 

others’ collections. This proliferation of incompatible toolkits of parts is a demonstration of 

valuation-in-action by community members that challenges the projected market value of 

synthetic biology, which associates central repositories of widely interchangeable parts with 

efficiency gains and more flexible innovation for biotechnology. 

 

What biological knowledge is appropriate or even possible to codify at this stage in the 

development of synthetic biology has surfaced as an important topic for discussion in the context 

of BioBrick design. Although an important foundational component for synthetic biology, in 

many respects the technical details of BioBrick design are just the tip of the iceberg. In practice, 

the development of BioBricks is testing ideas about the scope and limits of modularity in 

biology; for example, it is proving challenging to design standard modules that work predictably 

under any biological conditions. Indeed, even the question of what it means for a part to ‘work’ is 
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not clear. (Similar definitional issues have complicated efforts to standardize stem cell lines, see 

e.g. Eriksson & Webster 2008.) At present, it is far easier to make a BioBrick than to characterize 

one; agreeing on what to measure in order to characterize a biological part is acknowledged as a 

crucial issue for the progress of the field (Arkin, 2008), but has received less community 

attention to date than the issue of what design standard(s) BioBricks should conform to.8 The 

epistemological challenges involved in developing standards and adapting engineering principles 

to working with biology are far from trivial, even a decade into the BioBrick project (Kwok, 

2009). The details of these technical exercises are revealing sites for exploring the ongoing 

constitution of epistemic value in the field. 

 

The moral economy of synthetic biology: Balancing academic, community and market values in 

creating repositories of parts 

 

…what I also see is that, it’s very easy to spend a lot of time on this, you know, 

standardization discussions and community efforts and whatever, and in the end it’s 

difficult to show anything off for it. Because in the end I am judged by my publications 

(synthetic biologist 4)   

 

Early proponents of the BioBrick outlined a vision of standard biological parts housed in one or 

more central repositories (physical and/or virtual) that would be readily accessible by anyone. 

Such community resources, it is proposed, will promote distributed innovation in much the same 

                                                 
8 Some high-profile synthetic biology institutions are now beginning to devote concerted resource and attention to 
the challenge of characterizing biological parts, including the Centre for Synthetic Biology and Innovation at 
Imperial College London, and the BIOFAB: International Open Facility Advancing Biotechnology, based in 
California. 
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way as free availability of software code is seen to encourage innovation in programming. This is 

a powerful and attractive vision, and one that imagines a moral economy for synthetic biology 

grounded in the widespread exchange and circulation of biological parts. But it does not fit 

seamlessly with either the dominant reward system in academic research, or with existing models 

of ownership in industrial biotechnology (Rai & Boyle, 2007). 

 

The synthetic biologist quoted above is a postdoctoral researcher who is an active participant in 

international synthetic biology conferences and community initiatives. However, he has also 

adopted an alternative BioBrick design standard that suits his research needs rather than using the 

early community standard, and he has created his own personal collection of standard biological 

parts — a collection that he did not feel comfortable depositing in the centralized Registry of 

Parts until his project had been formally published in research papers. He is a community-minded 

researcher, but finds himself continually calibrating his actions to navigate between the strong 

community-oriented agenda of synthetic biology and the pressures to perform according to more 

traditional valuations of academic success. At his career stage, he could be disadvantaged by 

being too open about his work, sharing too freely, and spending too much time on community 

infrastructure development. This situation is not unusual among the synthetic biologists I have 

spoken with (similar concerns were also described in Knorr-Cetina’s 1999 study of molecular 

biology laboratories).  

 

The innovation potential and projected market value of synthetic biology are held up as 

justification for the open-source model of sharing parts. But at the level of laboratory practice, 

valuation of the BioBrick approach revolves around a somewhat different of concerns — it is a 
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more localized and individual process, in which prospective future value must be weighed against 

actions in the immediate present.9 Here we see a tension emerge between future commercial 

value and more traditional academic measures of reward and recognition. Publications and 

research grants remain the predominant reward system for most academic researchers, and with 

such metrics the pursuit of an individual, original research agenda is still seen as the most 

effective way to get ahead. The degree to which academic researchers are prepared to recalibrate 

their practices in relation to the BioBrick thus becomes based on a complex array of factors, 

related for example to their disciplinary training, the nature of their research project, and their 

career-stage. The standardization emphasis of synthetic biology might be seen as useful insofar as 

it helps individual researchers to streamline their laboratory workflows and make meaningful 

improvements in the efficiency of their own research and curation practices. However, at the 

moment it is not clear that most researchers see themselves deriving sufficient value (over a 

relevant timescale) from contributing to broader, community efforts. Furthermore, the dominant 

ownership model in biotechnology is one of patenting, encouraging protectionist behaviour for 

those researchers pursuing clearly application-oriented work.  

 

Prominent leaders in synthetic biology are trying to establish new mechanisms that fall in 

between the established academic and market systems of valuation, to reward those who 

contribute actively to community initiatives – for example, they have proposed formal 

publications like BioBrick characterization datasheets (Canton et al, 2008) and ‘Request for 

                                                 
9 See Brown (2013) for an exploration of similar deliberations between present and future value in the context of 
umbilical blood cord banking. 
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Comments’ (RFC) documents,10 as well as a bespoke intellectual property agreement, a contract-

like arrangement called the BioBrick Public Agreement.11 But for a given individual, the 

enthusiasm to subscribe to the proposed moral economy of synthetic biology must be weighed up 

against the need to maintain standing according to the metrics valued in one’s primary discipline 

of training, and also in relation to existing models of intellectual property protection in the life 

sciences. Several researchers have commented that they have started using BioBrick-style 

approaches to help restructure their laboratory practices, but this stage a majority of the synthetic 

biologists I have spoken with have not made their personal collections of biological parts 

available to a public repository like the Registry of Standard Biological Parts, providing 

justifications ranging from laziness to concerns over ownership. Nor do many of them use others’ 

parts from the MIT Registry, citing problems with reliability and a lack of part characterization 

data as key issues (see also Peccoud et al, 2008).  

 

Routine measurement and characterization work is not typically ascribed the sort of academic 

value that would be rewarded with a high-profile publication; this may help to account for why 

there has been comparatively little BioBrick characterization undertaken so far. However, the 

issue of part characterization is emerging as a central concern in synthetic biology. One might 

argue that the value of a BioBrick lies less in the availability of the material artefact itself than in 

the metadata associated with the artefact. As more and more characterization data about a given 

part gets collated, its behaviour in principle becomes more predictable (Arkin & Endy, 1999). 

Achieving (more) predictable design and construction of biological circuits is a central aim for 

                                                 
10 The Requests for Comments process is borrowed explicitly from the standard-setting approach used by the Internet 
Engineering Task Force, and for the synthetic biology community is managed by the BioBricks Foundation; see 
http://biobricks.org/programs/technical-standards-framework/ (accessed 29 July 2013).  
11 See https://biobricks.org/bpa/ (accessed 29 July 2013). Since its launch in June 2011 there has so far been little 
uptake of this mechanism across the synthetic biology community. 

http://biobricks.org/programs/technical-standards-framework/
https://biobricks.org/bpa/
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synthetic biologists. But characterization work is far more than a simple technical request; it is 

closely coupled to questions of exchange, credit, and reward – in short, to the moral economy of 

synthetic biology. The process of characterization reflects a transfer of labour and productive 

capacity from the body of the researcher to the biological part, but a transfer without immediate 

exchange value. The researcher is meant to invest (time, money, effort) in characterizing a part. 

In the proposed moral economy for synthetic biology, this labour does not translate into 

ownership or academic reward for the part(s) in question – quite the opposite, it is intended to 

disentangle the part from its (biological and institutional) context of production, so that it may 

circulate freely for others to use. A tension between the logic of a gift economy and that of a 

market economy thus emerges around the BioBrick part. The increased speculative value of the 

BioBrick as biocapital is achieved through the invisible labour and altruistic behaviour of 

researchers.12 At this stage in the development of the field, the actions and characterization 

efforts of researchers do not seem to unequivocally support this proposed relationship between 

labour and capital.   

 

Revolutionary or incremental change? Bypassing the BioBrick in the name of efficiency 

 

Coupled to BioBrick design is the suggestion that the production of complex DNA constructs for 

genetic engineering will become less onerous and more predictable. BioBricks are projected to 

add value through efficiency gains in laboratory practice — with knock-on effects for innovation 

in biotechnology more generally. Although the assembly of BioBricks can in principle become a 

more standardized and routine procedure (that a robot could perform), in many laboratories 

                                                 
12 As Lezaun notes in his contribution to this issue, practices of both valuation and de-valuation are simultaneously at 
play in structuring new moral economies in the contemporary life sciences. 
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combining BioBrick parts still seems to be a time-consuming process rife with possibilities for 

error. The BioBrick proposal relies on traditional molecular biology methods for assembling 

DNA – its novelty rests in reorganizing and streamlining existing techniques, rather than offering 

a distinctly new set of DNA assembly technologies. Using these methods, it seems to take about a 

week to combine two BioBrick parts (although multiple BioBrick assembly reactions can be 

performed in parallel if wanting to generate a DNA construct comprising several parts). One 

researcher described how “…in the beginning I had a lot of trouble to actually set it up,” and 

suggested that “if you do a lot of assemblies, I don’t think it’s going to, it’s not a technique that is 

going to survive for 15 years or 20 years. It’s something that is ok for now, but uh, I think you 

need something that is more efficient still” (synthetic biologist 4). Another researcher explained 

his motivation for investigating alternative, more ‘radical’ DNA assembly methods in terms of a 

certain frustration with BioBrick assembly: 

 

It just never worked as well as it ought to in my hands, or certainly in the hands of 

inexperienced students, who’d spend ages trying to combine two BioBricks. Whereas it 

was relatively easy to make a BioBrick…even when we’d had a bit of experience, 

combining two BioBricks was never all that reliable. (synthetic biologist 3) 

 

In practice, BioBricks might not be as straightforward and efficient to assemble as hoped for. We 

might ask whether difficulties being encountered with BioBrick assembly at this point relate to 

technical issues that might be overcome with time and effort, or whether codifying the tacit 

knowledge and expertise required for DNA assembly is a more challenging task than anticipated. 

Regardless, there are now several academic laboratories and companies working on alternative, 
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more efficient methods for DNA assembly, some of which no longer rely on the availability of 

BioBrick-style parts (e.g. Gibson et al, 2009). Similar to the rationales provided for the 

fractionation of BioBrick design standards (see above), the choice of DNA assembly method is 

suggested to depend on the size of the DNA construct being built, and epistemological questions 

such as the purpose for which it is being designed (Ellis et al, 2011). In practice, members of the 

growing synthetic biology community bring with them a diversity of interests that are starting to 

challenge the imagined value of the BioBrick as the foundation of a parts-based synthetic 

biology. What future, then, for freely available repositories of well-characterized biological 

parts? Whether BioBricks as currently conceived will remain central to synthetic biology remains 

to be seen; as one researcher put it: “I’m not too excited about thinking about the future of 

BioBricks as they are today, because they are biologically constrained” (synthetic biologist 5). 

 

Valuing life: plasticity, evolution and control 

 

Evolution = tyranny 

(Mutation without representation) 

 

This is the text on a presentation slide sometimes shown by Drew Endy when he talks about the 

potential for synthetic biology not just to stimulate innovation, but to bring the process of 

biological evolution under control. It points to another site where value is being contested in 

synthetic biology: between the engineering or design logic underpinning the BioBrick, and 

biological complexity and emergence (see Davies et al, this issue). 
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Postdoctoral synthetic biologist Christina Agapakis notes that “evolution plays an uneasy and 

complicated role in synthetic biology” (Agapakis, 2011, p.9). Evolution might be central to our 

understanding of life, but it surfaces as a biological characteristic that could threaten the success 

of synthetic biology.13 This engineering-led discipline aims to increase spatial and temporal 

control over biological production and reproduction. Evolution, with its “directionless and 

irrational changes” (Agapakis, 2011, p.9), is not a characteristic typical of engineering substrates, 

and over time risks corrupting careful biological designs. There are lively conversations 

underway within the synthetic biology community about whether and how evolution could be 

viewed as a characteristic to be harnessed in the pursuit of biological design, rather than a 

biological complexity to be eliminated (as suggested in the quip ‘evolution = tyranny’). To 

engineer reliably with biology, some suggest it will be necessary to work with, not against, 

evolution, and to create “new design and computational tools that take biological variability, 

uncertainty and evolution into account” (Purnick & Weiss, 2009, p.420). 

 

In Culturing Life, Landecker suggests that “the history of biotechnology from 1900 to now may 

be described as the increasing realization and exploration of the plasticity of living matter” 

(Landecker, 2007, p.232). She argues that through techniques such as cell culture and cryogenics, 

contemporary biotechnology has become expert at starting, stopping, suspending and accelerating 

cellular processes. This ability to temporarily suspend, refactor, and reanimate genetic material 

and biological organisms (particularly microorganisms) is central to the practice of synthetic 

biology, and the added dimension of engineering design might be seen as a natural extension to 

the trajectory of 20th century biotechnology that Landecker describes. Synthetic biologists are 

                                                 
13 In a similar vein, Melinda Cooper notes that ideas of emergence in biology are also framed as being problematic in 
US policy discourse around infectious disease and bioterrorism, which talks of ‘waging war’ or mobilizing against 
biological emergence (Cooper, 2007, p.28-31). 
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concerned with harnessing the generative potential of life, but also steering it down predictable 

and controllable paths determined by human design and intent. They want to mobilize the 

reproductive agency of living organisms while restricting their evolutionary potential. They 

propose the application of engineering principles as a way of walking this line between plasticity 

and predictability. 

 

Sitting at the confluence of information science, biological science and engineering science, 

synthetic biology arguably opens possibilities for exacerbating the temporal discontinuities 

described by Landecker. The physical repositories of cells and genetic material that have been a 

focus of her work are now being complemented by online repositories of sequence and 

characterization data. The capacity to store and manipulate DNA sequences on the computer, and 

to synthesize and format long sequences of DNA from scratch, do mark changes in practice that 

liberate researchers from the constraints of evolutionary timescales and relationships when 

designing new biological systems (Pottage, 2006). The design approach of synthetic biology (as 

manifest in examples like the BioBrick) works to disentangle or decouple living organisms from 

their evolutionary pasts and futures. It cannot dispense entirely with the materiality of living 

systems or the temporal processes of reproduction – the animation of designed genetic circuitry 

still requires a physical, cellular context. But it may contribute to a transformation of our 

understanding of the biological (Landecker, 2007; Mackenzie et al, 2013), to promote an 

understanding and valuing of life that is less dependent on lineage and evolution. 

 

 

Discussion 
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Negotiations over the promises and objects of synthetic biology are helping to define what value 

means and how value is being constituted in practice for the field. As material artefacts and 

foundational elements of a new approach to biotechnology, BioBricks are simultaneously 

technical and social objects that serve as a focal point for different disciplinary approaches to 

working with biology, and around which different systems of valuation are operating. The 

BioBrick proposal is certainly proving generative in terms of identifying epistemic practices and 

assumptions among engineers, biologists and computer scientists entering the field. However, 

tensions between some of the future-oriented value claims made by its early proponents and the 

practices being followed by BioBrick users mean that at this stage the future of BioBricks seems 

far from certain.  

 

Treating value as a verb, and adopting a sociological lens to explore valuation practices in action 

reveals a number of sites of ambivalence and contestation over the BioBrick approach to 

synthetic biology: between the pragmatic push for standardization and the epistemological trade-

offs this necessitates; between the immediate present and the prospective future value of 

restructuring laboratory practices according to new workflows; between the economic logics of 

gift exchange, academic credit, and market commodities; between dreams of revolutions and 

realities of incremental change; and between the plasticity and predictability of living systems.  

The registers of epistemic, academic, ethical and market value we encounter are centred at 

different levels of abstraction, operate on different timescales, and are concerned with different 

objectives. This is not a case study satisfied with revealing a simple gap between the promises 

and practices of synthetic biology; it shows how value is being constituted in these in-between 
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spaces, how it requires both promise and practice to emerge and form, and how it both shapes and 

becomes embedded in the material and social worlds of an emerging field. I reveal in empirical 

detail how the making of an epistemic community and a discipline involves coordination and 

alignment among different valuation systems, and the challenges involved in performing this 

work.    

 

Although focused on synthetic biology, the negotiations of value identified here arguably apply 

more broadly to developments in the life sciences, and to studies of biocapital and moral 

economies. Synthetic biology is just one of several emerging fields of research and practice that 

promise to reconfigure the life sciences in pursuit of market goals and broader societal needs. 

Much of the literature on biocapital to date has focused on research and commodification 

practices as they relate to human materials, identities, and subjectivities. Importantly, synthetic 

biology also draws our attention to the non-human and micro-organismal facets of biocapital, 

which also stand to have important roles in our understanding and exploitation of life in the 

bioeconomy. 
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