17 research outputs found
Update on the Diagnosis and Management of Brugada Syndrome
Brugada Syndrome (BrS) is an autosomal dominant channelopathy with variable penetrance affecting the sodium channel. It reduces the transport of sodium ions essential for proper generation of the cardiac action potential. The resulting inhomogeneous repolarisation in areas of the RV epicardium causes malignant ventricular arrhythmias.BrS is diagnosed by typical cove shaped ST elevation of > 2mm in ≥1 RV precordial lead V1, V2 occurring spontaneously or after provocative drug test with IV administration of Class 1 antiarrhythmic drug such as flecainide or ajmaline.The incidence of BrS is variable being higher in South East Asians and is generally quoted as 1:2000. It is responsible for up to 20% of sudden arrhythmic deaths in those without structural heart disease. Typical presentation is syncope or resuscitated sudden death and symptoms usually occur at night or at rest especially after a large meal. Fever is a common trigger, particularly in children.Genetic testing for BrS is a Class 2A indication and the yield has increased recently to nearly 40%. Genetic testing assists with family screening
Fryns syndrome associated with recessive mutations in PIGN in two separate families
Fryns syndrome is an autosomal recessive condition characterized by congenital diaphragmatic hernia (CDH), dysmorphic facial features, distal digital hypoplasia, and other associated malformations, and is the most common syndromic form of CDH. No gene has been associated with this condition. Whole-exome sequence data from two siblings and three unrelated individuals with Fryns syndrome were filtered for rare, good quality, coding mutations fitting a recessive inheritance model. Compound heterozygous mutations in <i>PIGN</i> were identified in the siblings, with appropriate parental segregation: a novel STOP mutation (c.1966C>T: p.Glu656X) and a rare (minor allele frequency <0.001) donor splice site mutation (c.1674+1G>C) causing skipping of exon 18 and utilization of a cryptic acceptor site in exon 19. A further novel homozygous STOP mutation in <i>PIGN</i> (c.694A>T: p.Lys232X) was detected in one unrelated case. All three variants affected highly conserved bases. The two remaining cases were negative for <i>PIGN</i> mutations. Mutations in <i>PIGN</i> have been reported in cases with multiple congenital anomalies, including one case with syndromic CDH. Fryns syndrome can be caused by recessive mutations in <i>PIGN</i>. Whether <i>PIGN</i> affects other syndromic and non-syndromic forms of CDH warrants investigation
Gene selection for the Australian Reproductive Genetic Carrier Screening Project (“Mackenzie’s Mission”)
Reproductive genetic carrier screening aims to offer couples information about their chance of having children with certain autosomal recessive and X-linked genetic conditions. We developed a gene list for use in “Mackenzie’s Mission”, a research project in which 10,000 couples will undergo screening. Criteria for selecting genes were: the condition should be life-limiting or disabling, with childhood onset, such that couples would be likely to take steps to avoid having an affected child; and/or be one for which early diagnosis and intervention would substantially change outcome. Strong evidence for gene-phenotype relationship was required. Candidate genes were identified from OMIM and via review of 23 commercial and published gene lists. Genes were reviewed by 16 clinical geneticists using a standard operating procedure, in a process overseen by a multidisciplinary committee which included clinical geneticists, genetic counselors, an ethicist, a parent of a child with a genetic condition and scientists from diagnostic and research backgrounds. 1300 genes met criteria. Genes associated with non-syndromic deafness and non-syndromic differences of sex development were not included. Our experience has highlighted that gene selection for a carrier screening panel needs to be a dynamic process with ongoing review and refinement
Kufs disease due to mutation of CLN6: clinical, pathological and molecular genetic features
Kufs disease is the major adult form of neuronal ceroid lipofuscinosis, but is rare and difficult to diagnose. Diagnosis was traditionally dependent on the demonstration of characteristic storage material, but distinction from normal age-related accumulation of lipofuscin can be challenging. Mutation of CLN6 has emerged as the most important cause of recessive Kufs disease but, remarkably, is also responsible for variant late infantile ceroid lipofuscinosis. Here we provide a detailed description of Kufs disease due to CLN6 pathogenic variants. We studied 20 cases of Kufs disease with CLN6 pathogenic variants from 13 unrelated families. Mean age of onset was 28 years (range 12-51) with bimodal peaks in teenage and early adult life. The typical presentation was of progressive myoclonus epilepsy with debilitating myoclonic seizures and relatively infrequent tonic-clonic seizures. Patients became wheelchair-bound with a mean 12 years post-onset. Ataxia was the most prominent motor feature. Dementia appeared to be an invariable accompaniment, although it could take a number of years to manifest and occasionally cognitive impairment preceded myoclonic seizures. Patients were usually highly photosensitive on EEG. MRI showed progressive cerebral and cerebellar atrophy. The median survival time was 26 years from disease onset. Ultrastructural examination of the pathology revealed fingerprint profiles as the characteristic inclusions, but they were not reliably seen in tissues other than brain. Curvilinear profiles, which are seen in the late infantile form, were not a feature. Of the 13 unrelated families we observed homozygous CLN6 pathogenic variants in four and compound heterozygous variants in nine. Compared to the variant late infantile form, there was a lower proportion of variants that predicted protein truncation. Certain heterozygous missense variants in the same amino acid position were found in both variant late infantile and Kufs disease. There was a predominance of cases from Italy and surrounding regions; this was partially explained by the discovery of three founder pathogenic variants. Clinical distinction of type A (progressive myoclonus epilepsy) and type B (dementia with motor disturbance) Kufs disease was supported by molecular diagnoses. Type A is usually caused by recessive pathogenic variants in CLN6 or dominant variants in DNAJC5. Type B Kufs is usually associated with recessive CTSF pathogenic variants. The diagnosis of Kufs remains challenging but, with the availability of genetic diagnosis, this will largely supersede the use of diagnostic biopsies, particularly as biopsies of peripheral tissues has unsatisfactory sensitivity and specificity
Kufs disease due to mutation of CLN6: clinical, pathological and molecular genetic features.
Kufs disease is the major adult form of neuronal ceroid lipofuscinosis, but is rare and difficult to diagnose. Diagnosis was traditionally dependent on the demonstration of characteristic storage material, but distinction from normal age-related accumulation of lipofuscin can be challenging. Mutation of CLN6 has emerged as the most important cause of recessive Kufs disease but, remarkably, is also responsible for variant late infantile ceroid lipofuscinosis. Here we provide a detailed description of Kufs disease due to CLN6 pathogenic variants. We studied 20 cases of Kufs disease with CLN6 pathogenic variants from 13 unrelated families. Mean age of onset was 28 years (range 12-51) with bimodal peaks in teenage and early adult life. The typical presentation was of progressive myoclonus epilepsy with debilitating myoclonic seizures and relatively infrequent tonic-clonic seizures. Patients became wheelchair-bound with a mean 12 years post-onset. Ataxia was the most prominent motor feature. Dementia appeared to be an invariable accompaniment, although it could take a number of years to manifest and occasionally cognitive impairment preceded myoclonic seizures. Patients were usually highly photosensitive on EEG. MRI showed progressive cerebral and cerebellar atrophy. The median survival time was 26 years from disease onset. Ultrastructural examination of the pathology revealed fingerprint profiles as the characteristic inclusions, but they were not reliably seen in tissues other than brain. Curvilinear profiles, which are seen in the late infantile form, were not a feature. Of the 13 unrelated families we observed homozygous CLN6 pathogenic variants in four and compound heterozygous variants in nine. Compared to the variant late infantile form, there was a lower proportion of variants that predicted protein truncation. Certain heterozygous missense variants in the same amino acid position were found in both variant late infantile and Kufs disease. There was a predominance of cases from Italy and surrounding regions; this was partially explained by the discovery of three founder pathogenic variants. Clinical distinction of type A (progressive myoclonus epilepsy) and type B (dementia with motor disturbance) Kufs disease was supported by molecular diagnoses. Type A is usually caused by recessive pathogenic variants in CLN6 or dominant variants in DNAJC5. Type B Kufs is usually associated with recessive CTSF pathogenic variants. The diagnosis of Kufs remains challenging but, with the availability of genetic diagnosis, this will largely supersede the use of diagnostic biopsies, particularly as biopsies of peripheral tissues has unsatisfactory sensitivity and specificity
Kufs Disease, the Major Adult Form of Neuronal Ceroid Lipofuscinosis, Caused by Mutations in CLN6
The molecular basis of Kufs disease is unknown, whereas a series of genes accounting for most of the childhood-onset forms of neuronal ceroid lipofuscinosis (NCL) have been identified. Diagnosis of Kufs disease is difficult because the characteristic lipopigment is largely confined to neurons and can require a brain biopsy or autopsy for final diagnosis. We mapped four families with Kufs disease for whom there was good evidence of autosomal-recessive inheritance and found two peaks on chromosome 15. Three of the families were affected by Kufs type A disease and presented with progressive myoclonus epilepsy, and one was affected by type B (presenting with dementia and motor system dysfunction). Sequencing of a candidate gene in one peak shared by all four families identified no mutations, but sequencing of CLN6, found in the second peak and shared by only the three families affected by Kufs type A disease, revealed pathogenic mutations in all three families. We subsequently sequenced CLN6 in eight other families, three of which were affected by recessive Kufs type A disease. Mutations in both CLN6 alleles were found in the three type A cases and in one family affected by unclassified Kufs disease. Mutations in CLN6 are the major cause of recessive Kufs type A disease. The phenotypic differences between variant late-infantile NCL, previously found to be caused by CLN6, and Kufs type A disease are striking; there is a much later age at onset and lack of visual involvement in the latter. Sequencing of CLN6 will provide a simple diagnostic strategy in this disorder, in which definitive identification usually requires invasive biopsy