39 research outputs found

    Repurposing of Rutan showed effective treatment for COVID-19 disease

    Get PDF
    Previously, from the tannic sumac plant (Rhus coriaria), we developed the Rutan 25 mg oral drug tablets with antiviral activity against influenza A and B viruses, adenoviruses, paramyxoviruses, herpes virus, and cytomegalovirus. Here, our re-purposing study demonstrated that Rutan at 25, 50, and 100 mg/kg provided a very effective and safe treatment for COVID-19 infection, simultaneously inhibiting two vital enzyme systems of the SARS-CoV-2 virus: 3C-like proteinase (3CLpro) and RNA-dependent RNA polymerase (RdRp). There was no drug accumulation in experimental animals’ organs and tissues. A clinical study demonstrated a statistically significant decrease in the C-reactive protein and a reduction of the viremia period. In patients receiving Rutan 25 mg (children) and 100 mg (adults), the frequency of post-COVID-19 manifestations was significantly less than in the control groups not treated with Rutan tablets. Rutan, having antiviral activity, can provide safe treatment and prevention of COVID-19 in adults and children.Clinical Trial RegistrationClinicalTrials.gov, ID NCT05862883

    The GRANDMA network in preparation for the fourth gravitational-wave observing run

    Get PDF
    GRANDMA is a world-wide collaboration with the primary scientific goal ofstudying gravitational-wave sources, discovering their electromagneticcounterparts and characterizing their emission. GRANDMA involves astronomers,astrophysicists, gravitational-wave physicists, and theorists. GRANDMA is now atruly global network of telescopes, with (so far) 30 telescopes in bothhemispheres. It incorporates a citizen science programme (Kilonova-Catcher)which constitutes an opportunity to spread the interest in time-domainastronomy. The telescope network is an heterogeneous set of already-existingobserving facilities that operate coordinated as a single observatory. Withinthe network there are wide-field imagers that can observe large areas of thesky to search for optical counterparts, narrow-field instruments that dotargeted searches within a predefined list of host-galaxy candidates, andlarger telescopes that are devoted to characterization and follow-up of theidentified counterparts. Here we present an overview of GRANDMA after the thirdobserving run of the LIGO/VIRGO gravitational-wave observatories in 201920202019-2020and its ongoing preparation for the forthcoming fourth observational campaign(O4). Additionally, we review the potential of GRANDMA for the discovery andfollow-up of other types of astronomical transients.<br

    Ready for O4 II: GRANDMA Observations of Swift GRBs during eight-weeks of Spring 2022

    Full text link
    We present a campaign designed to train the GRANDMA network and its infrastructure to follow up on transient alerts and detect their early afterglows. In preparation for O4 II campaign, we focused on GRB alerts as they are expected to be an electromagnetic counterpart of gravitational-wave events. Our goal was to improve our response to the alerts and start prompt observations as soon as possible to better prepare the GRANDMA network for the fourth observational run of LIGO-Virgo-Kagra (which started at the end of May 2023), and future missions such as SM. To receive, manage and send out observational plans to our partner telescopes we set up dedicated infrastructure and a rota of follow-up adcates were organized to guarantee round-the-clock assistance to our telescope teams. To ensure a great number of observations, we focused on Swift GRBs whose localization errors were generally smaller than the GRANDMA telescopes' field of view. This allowed us to bypass the transient identification process and focus on the reaction time and efficiency of the network. During 'Ready for O4 II', 11 Swift/INTEGRAL GRB triggers were selected, nine fields had been observed, and three afterglows were detected (GRB 220403B, GRB 220427A, GRB 220514A), with 17 GRANDMA telescopes and 17 amateur astronomers from the citizen science project Kilonova-Catcher. Here we highlight the GRB 220427A analysis where our long-term follow-up of the host galaxy allowed us to obtain a photometric redshift of z=0.82±0.09z=0.82\pm0.09, its lightcurve elution, fit the decay slope of the afterglows, and study the properties of the host galaxy

    Multi-band analyses of the bright GRB~230812B and the associated SN2023pel

    Full text link
    GRB~230812B is a bright and relatively nearby (z=0.36z =0.36) long gamma-ray burst that has generated significant interest in the community and therefore has been subsequently observed over the entire electromagnetic spectrum. We report over 80 observations in X-ray, ultraviolet, optical, infrared, and sub-millimeter bands from the GRANDMA (Global Rapid Advanced Network for Multi-messenger Addicts) network of observatories and from observational partners. Adding complementary data from the literature, we then derive essential physical parameters associated with the ejecta and external properties (i.e. the geometry and environment) and compare with other analyses of this event (e.g. Srinivasaragavan et al. 2023). We spectroscopically confirm the presence of an associated supernova, SN2023pel, and we derive a photospheric expansion velocity of v \sim 17×103\times10^3 km s1s^{-1}. We analyze the photometric data first using empirical fits of the flux and then with full Bayesian Inference. We again strongly establish the presence of a supernova in the data, with an absolute peak r-band magnitude Mr=19.41±0.10M_r = - 19.41 \pm 0.10. We find a flux-stretching factor or relative brightness kSN=1.04±0.09k_{\rm SN}=1.04 \pm 0.09 and a time-stretching factor sSN=0.68±0.05s_{\rm SN}=0.68 \pm 0.05, both compared to SN1998bw. Therefore, GRB 230812B appears to have a clear long GRB-supernova association, as expected in the standard collapsar model. However, as sometimes found in the afterglow modelling of such long GRBs, our best fit model favours a very low density environment (log10(nISM/cm3)=2.161.30+1.21\log_{10}({n_{\rm ISM}/{\rm cm}^{-3}}) = -2.16^{+1.21}_{-1.30}). We also find small values for the jet's core angle θcore=1.700.71+1.00 deg\theta_{\rm core}={1.70^{+1.00}_{-0.71}} \ \rm{deg} and viewing angle. GRB 230812B/SN2023pel is one of the best characterized afterglows with a distinctive supernova bump

    Diminishing benefits of urban living for children and adolescents’ growth and development

    Get PDF
    Optimal growth and development in childhood and adolescence is crucial for lifelong health and well-being1–6. Here we used data from 2,325 population-based studies, with measurements of height and weight from 71 million participants, to report the height and body-mass index (BMI) of children and adolescents aged 5–19 years on the basis of rural and urban place of residence in 200 countries and territories from 1990 to 2020. In 1990, children and adolescents residing in cities were taller than their rural counterparts in all but a few high-income&nbsp;countries. By 2020, the urban height advantage became smaller in most countries, and in many high-income western countries it reversed into a small urban-based disadvantage. The exception was for boys in most countries in sub-Saharan Africa and in some countries in Oceania, south Asia and the region of central Asia, Middle East and north Africa. In these countries, successive cohorts of boys from rural places either did not gain height or possibly became shorter, and hence fell further behind their urban peers. The difference between the age-standardized mean BMI of children in urban and rural areas was &lt;1.1 kg m–2 in the vast majority of&nbsp;countries. Within this small range, BMI increased slightly more in cities than in rural areas, except in south Asia, sub-Saharan Africa and some countries in central and eastern Europe. Our results show that in much of the world, the growth and developmental advantages of living in cities have diminished in the twenty-first century, whereas in much of sub-Saharan Africa they have amplified

    Diminishing benefits of urban living for children and adolescents’ growth and development

    Get PDF
    AbstractOptimal growth and development in childhood and adolescence is crucial for lifelong health and well-being1–6. Here we used data from 2,325 population-based studies, with measurements of height and weight from 71 million participants, to report the height and body-mass index (BMI) of children and adolescents aged 5–19 years on the basis of rural and urban place of residence in 200 countries and territories from 1990 to 2020. In 1990, children and adolescents residing in cities were taller than their rural counterparts in all but a few high-income countries. By 2020, the urban height advantage became smaller in most countries, and in many high-income western countries it reversed into a small urban-based disadvantage. The exception was for boys in most countries in sub-Saharan Africa and in some countries in Oceania, south Asia and the region of central Asia, Middle East and north Africa. In these countries, successive cohorts of boys from rural places either did not gain height or possibly became shorter, and hence fell further behind their urban peers. The difference between the age-standardized mean BMI of children in urban and rural areas was &lt;1.1 kg m–2 in the vast majority of countries. Within this small range, BMI increased slightly more in cities than in rural areas, except in south Asia, sub-Saharan Africa and some countries in central and eastern Europe. Our results show that in much of the world, the growth and developmental advantages of living in cities have diminished in the twenty-first century, whereas in much of sub-Saharan Africa they have amplified.</jats:p

    Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults

    Get PDF
    Background Underweight and obesity are associated with adverse health outcomes throughout the life course. We estimated the individual and combined prevalence of underweight or thinness and obesity, and their changes, from 1990 to 2022 for adults and school-aged children and adolescents in 200 countries and territories. Methods We used data from 3663 population-based studies with 222 million participants that measured height and weight in representative samples of the general population. We used a Bayesian hierarchical model to estimate trends in the prevalence of different BMI categories, separately for adults (age ≥20 years) and school-aged children and adolescents (age 5–19 years), from 1990 to 2022 for 200 countries and territories. For adults, we report the individual and combined prevalence of underweight (BMI 2 SD above the median). Findings From 1990 to 2022, the combined prevalence of underweight and obesity in adults decreased in 11 countries (6%) for women and 17 (9%) for men with a posterior probability of at least 0·80 that the observed changes were true decreases. The combined prevalence increased in 162 countries (81%) for women and 140 countries (70%) for men with a posterior probability of at least 0·80. In 2022, the combined prevalence of underweight and obesity was highest in island nations in the Caribbean and Polynesia and Micronesia, and countries in the Middle East and north Africa. Obesity prevalence was higher than underweight with posterior probability of at least 0·80 in 177 countries (89%) for women and 145 (73%) for men in 2022, whereas the converse was true in 16 countries (8%) for women, and 39 (20%) for men. From 1990 to 2022, the combined prevalence of thinness and obesity decreased among girls in five countries (3%) and among boys in 15 countries (8%) with a posterior probability of at least 0·80, and increased among girls in 140 countries (70%) and boys in 137 countries (69%) with a posterior probability of at least 0·80. The countries with highest combined prevalence of thinness and obesity in school-aged children and adolescents in 2022 were in Polynesia and Micronesia and the Caribbean for both sexes, and Chile and Qatar for boys. Combined prevalence was also high in some countries in south Asia, such as India and Pakistan, where thinness remained prevalent despite having declined. In 2022, obesity in school-aged children and adolescents was more prevalent than thinness with a posterior probability of at least 0·80 among girls in 133 countries (67%) and boys in 125 countries (63%), whereas the converse was true in 35 countries (18%) and 42 countries (21%), respectively. In almost all countries for both adults and school-aged children and adolescents, the increases in double burden were driven by increases in obesity, and decreases in double burden by declining https://researchonline.ljmu.ac.uk/images/research_banner_face_lab_290.jpgunderweight or thinness. Interpretation The combined burden of underweight and obesity has increased in most countries, driven by an increase in obesity, while underweight and thinness remain prevalent in south Asia and parts of Africa. A healthy nutrition transition that enhances access to nutritious foods is needed to address the remaining burden of underweight while curbing and reversing the increase in obesity

    Tajik Basin and Southwestern Tian Shan, Northwestern India-Asia Collision Zone: 3. Preorogenic to Synorogenic Retro-foreland Basin Evolution in the Eastern Tajik Depression and Linkage to the Pamir Hinterland

    No full text
    The Tajik basin archives the orogenic evolution of the Pamir hinterland. Stratigraphic-sedimentologic observations from Cretaceous-Pliocene strata along its eastern margin describe the depositional environment and basin-formation stages in reaction to hinterland exhumation and basin inversion. During the Late Cretaceous-Eocene (preorogenic stage: ~100–34 Ma), a shallow-marine to terrestrial basin extended throughout Central Asia. An alluvial plain with influx of conglomerate bodies (Baljuvon Formation) indicates a first pulse of hinterland erosion and foreland-basin formation in the late Oligocene-early Miocene (synorogenic stage Ia: ~34–23 Ma). Further hinterland exhumation deposited massive alluvial conglomerates (Khingou Formation) in the early-middle Miocene (synorogenic stage Ib: ~23–15 Ma). Westward thickening growth strata suggest transformation of the Tajik basin into the Tajik fold-thrust belt in the middle-late Miocene (synorogenic stage IIa: ~15–5 Ma). Increased water supply led to the formation of fluvial mega-fans (Tavildara Formation). Latest Miocene-Pliocene shortening constructed basin morphology that blocked sediment bypass into the central basin from the east (Karanak Formation), triggering drainage-system reorganization from transverse to longitudinal sediment transport (synorogenic stage IIb: < ~5 Ma). Accelerated shortening (~27–20 Ma) and foreland-directed collapse (~23–12 Ma) of Pamir-plateau crust loaded the foreland and induced synorogenic stages Ia and Ib. Coupling of Indian and Asian cratonic lithospheres and onset of northward and westward delamination/rollback of Asian lithosphere (i.e., lithosphere of the Tajik basin) beneath the Pamir at ~12–11 Ma transformed the Tajik basin into the Tajik fold-thrust belt (synorogenic stage IIa). The timing of the sedimentologically derived basin reconfiguration matches the thermochronologically derived onset of Tajik-basin inversion at ~12 Ma
    corecore