21 research outputs found

    Seismic Efficiency for Simple Crater Formation in the Martian Top Crust Analog

    Get PDF
    The first seismometer operating on the surface of another planet was deployed by the NASA InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) mission to Mars. It gives us an opportunity to investigate the seismicity of Mars, including any seismic activity caused by small meteorite bombardment. Detectability of impact generated seismic signals is closely related to the seismic efficiency, defined as the fraction of the impactor's kinetic energy transferred into the seismic energy in a target medium. This work investigated the seismic efficiency of the Martian near surface associated with small meteorite impacts on Mars. We used the iSALE‐2D (Impact‐Simplified Arbitrary Lagrangian Eulerian) shock physics code to simulate the formation of the meter‐size impact craters, and we used a recently formed 1.5 m diameter crater as a case study. The Martian crust was simulated as unfractured nonporous bedrock, fractured bedrock with 25% porosity, and highly porous regolith with 44% and 65% porosity. We used appropriate strength and porosity models defined in previous works, and we identified that the seismic efficiency is very sensitive to the speed of sound and elastic threshold in the target medium. We constrained the value of the impact‐related seismic efficiency to be between the order of ∼10‐7 to 10‐6 for the regolith and ∼10‐4 to 10‐3 for the bedrock. For new impacts occurring on Mars, this work can help understand the near‐surface properties of the Martian crust, and it contributes to the understanding of impact detectability via seismic signals as a function of the target media

    The Seismic Moment and Seismic Efficiency of Small Impacts on Mars

    Get PDF
    Since landing in late 2018, the InSight lander has been recording seismic signals on the surface of Mars. Despite nominal prelanding estimates of one to three meteorite impacts detected per Earth year, none have yet been identified seismically. To inform revised detectability estimates, we simulated numerically a suite of small impacts onto Martian regolith and characterized their seismic source properties. For the impactor size and velocity range most relevant for InSight, crater diameters are 1–30 m. We found that in this range scalar seismic moment is 106–1010 Nm and increases almost linearly with impact momentum. The ratio of horizontal to vertical seismic moment tensor components is ∼1, implying an almost isotropic P wave source, for vertical impacts. Seismic efficiencies are ∼10−6, dependent on the target crushing strength and impact velocity. Our predictions of relatively low seismic efficiency and seismic moment suggest that meteorite impact detectability on Mars is lower than previously assumed. Detection chances are best for impacts forming craters of diameter >10 m

    Largest recent impact craters on Mars: Orbital imaging and surface seismic co-investigation.

    Get PDF
    Two >130-meter-diameter impact craters formed on Mars during the later half of 2021. These are the two largest fresh impact craters discovered by the Mars Reconnaissance Orbiter since operations started 16 years ago. The impacts created two of the largest seismic events (magnitudes greater than 4) recorded by InSight during its 3-year mission. The combination of orbital imagery and seismic ground motion enables the investigation of subsurface and atmospheric energy partitioning of the impact process on a planet with a thin atmosphere and the first direct test of martian deep-interior seismic models with known event distances. The impact at 35°N excavated blocks of water ice, which is the lowest latitude at which ice has been directly observed on Mars

    PRIMENA HIBRIDNIH RECEPTORSKIH MODELA ZA ISPITIVANJE TRANSPORTA PM10 ČESTICA NA PODRUČJE BEOGRADA

    No full text
    Ispitivanje uticaja transporta atmosferskih aerosola na njihove koncentracije u urbanoj sredini su od ključnog značaja za razvoj i unapređenje efikasne kontrole kvaliteta vazduha. U periodu od 2003. do 2006. godine u Beogradu su vršena merenja dnevnih masenih koncentracija PM10 čestica i sadržaja metala (Pb, Cu, Zn, Al, Mn, Fe, Cr, Ni i V) metodom atomske apsorpcione spektroskopije. Analizirana je njihova međusobna povezanost, trend promena koncentracija, kao i zavisnost od meteoroloških parametara. U cilju određivanja mogućeg regionalnog transporta atmosferskih aerosola na područje Beograda i identifikacije potencijalnih oblasti u kojima se nalaze izvori emisije primenjena su dva hibridna receptorska modela, Funkcija potencijalnih doprinosa izvora emisije i Model trajektorija otežinjenih koncentracijama. Dobijeni rezultati ukazuju na postojanje dominantnog transporta čestica iz zapadnih i jugozapadnih oblasti

    Seismic efficiency and seismic moment for small craters on mars formed in the layered uppermost crust

    Get PDF
    Seismic activity generated by impacts depends on impact conditions and properties of the impact site. Here, we combined mapping of the regolith thickness with numerical impact simulations to better estimate the seismic efficiency and seismic moment generated in small impact events in the uppermost crust on Mars. We used mapping of crater morphology to determine the regolith thickness that craters formed in. We found that local regolith thickness in the late Amazonian units is between 4 and 9 m. Combined with previous estimates for the NASA InSight landing site, we composed a more realistic uppermost crust analog and implemented it in numerical impact simulations. We estimated the seismic efficiency and seismic moment for small craters on Mars impacting a non-porous or fractured bedrock overlaid by 5, 10, or 15 m thick regolith. Seismic energy showed more dependence on target properties. Three orders of magnitude more energy were produced in stronger targets. The seismic moment does not depend on target properties, and we confirm that seismic moment is almost proportional to impact momentum. The resulting seismic moment is in agreement up to a factor of 4 between different target types. We improved the scaling relationships developed from numerical simulations used in seismic moment approximations by constraining its dependence on more realistic target properties

    Numerical Simulations of the Apollo S-IVB Artificial Impacts on the Moon

    No full text
    The third stage of the Saturn IV rocket used in the five Apollo missions made craters on the Moon ∼30 m in diameter. Their initial impact conditions were known, so they can be considered controlled impacts. Here, we used the iSALE-2D shock physics code to numerically simulate the formation of these craters, and to calculate the vertical component of seismic moment (∼4 × 1010 Nm) and seismic efficiency (∼10−6) associated with these impacts. The irregular booster shape likely caused the irregular crater morphology observed. To investigate this, we modeled six projectile geometries, with footprint area between 3 and 105 m2, keeping the mass and velocity of the impactor constant. We showed that the crater depth and diameter decreased as the footprint area increased. The central mound observed in lunar impact sites could be a result of layering of the target and/or low density of the projectile. Understanding seismic signatures from impact events is important for planetary seismology. Calculating seismic parameters and validating them against controlled experiments in a planetary setting will help us understand the seismic data received, not only from the Moon, but also from the InSight Mission on Mars and future seismic missions

    Numerical simulations of the Apollo S-IVB artificial impacts on the moon

    Get PDF
    The third stage of the Saturn IV rocket used in the five Apollo missions made craters on the Moon ∼30 m in diameter. Their initial impact conditions were known, so they can be considered controlled impacts. Here, we used the iSALE-2D shock physics code to numerically simulate the formation of these craters, and to calculate the vertical component of seismic moment (∼4 × 1010 Nm) and seismic efficiency (∼10−6) associated with these impacts. The irregular booster shape likely caused the irregular crater morphology observed. To investigate this, we modeled six projectile geometries, with footprint area between 3 and 105 m2, keeping the mass and velocity of the impactor constant. We showed that the crater depth and diameter decreased as the footprint area increased. The central mound observed in lunar impact sites could be a result of layering of the target and/or low density of the projectile. Understanding seismic signatures from impact events is important for planetary seismology. Calculating seismic parameters and validating them against controlled experiments in a planetary setting will help us understand the seismic data received, not only from the Moon, but also from the InSight Mission on Mars and future seismic missions

    Early crustal processes revealed by the ejection site of the oldest martian meteorite

    Get PDF
    International audienceAbstract The formation and differentiation of the crust of Mars in the first tens of millions of years after its accretion can only be deciphered from incredibly limited records. The martian breccia NWA 7034 and its paired stones is one of them. This meteorite contains the oldest martian igneous material ever dated: ~4.5 Ga old. However, its source and geological context have so far remained unknown. Here, we show that the meteorite was ejected 5–10 Ma ago from the north-east of the Terra Cimmeria—Sirenum province, in the southern hemisphere of Mars. More specifically, the breccia belongs to the ejecta deposits of the Khujirt crater formed 1.5 Ga ago, and it was ejected as a result of the formation of the Karratha crater 5–10 Ma ago. Our findings demonstrate that the Terra Cimmeria—Sirenum province is a relic of the differentiated primordial martian crust, formed shortly after the accretion of the planet, and that it constitutes a unique record of early crustal processes. This province is an ideal landing site for future missions aiming to unravel the first tens of millions of years of the history of Mars and, by extension, of all terrestrial planets, including the Earth
    corecore