10 research outputs found

    Terminal Cretaceous climate change and biotic response in Antarctica

    Get PDF
    Latest Cretaceous to early Palaeogene climates in Antarctica are being investigated from an exceptional sedimentary sequence on Seymour Island (James Ross Basin, Antarctic Peninsula) to determine the nature of climate change at the end of the Cretaceous. It has been suggested that, following peak mid Cretaceous warmth, cooling during the Maastrichtian (~71-65 Ma) may have been severe enough for short-term glaciations at high latitudes, challenging the current view of an ice-free, Cretaceous greenhouse world. High resolution records of palaeontological, sedimentological, and geochemical signals are being obtained to investigate the climate and environmental context at the Antarctic margin prior to the Cretaceous/Tertiary extinctions, the biotic response in the marine and terrestrial realm, and to test the hypothesis of the presence of ice in conjunction with climate/ice sheet model simulations

    Spherical and columnar, septarian,18 O-depleted, calcite concretions from Middle-Upper Permian lacustrine siltstones in northern Mozambique : evidence for very early diagenesis and multiple fluids

    No full text
    Calcite septarian concretions from the Permian Beaufort Group in the Maniamba Graben (NW Mozambique) allow controls on the composition and nature of diagenetic fluids to be investigated.The concretions formedinlacustrine siltstones, where they occur in spherical (1 to 70 cm in diameter) and columnar (up to 50 cm long) forms within three closely spaced, discrete beds totalling 2Æ5 min thickness. Cementation began at an early stage of diagenesis and entrapped non-compacted burrows and calcified plant roots. The cylindrical concretions overgrew calcified vertical plant roots, which experienced shrinkage cracking after entrapment. Two generations of concretionary body cement and two generations of septarian crack infill are distinguished. The early generation in both cases is a low-Mn, Mg-rich calcite, whereas the later generation is a low-Mg, Mn-rich calcite. The change in chemistry is broadly consistent with a time (burial)-related transition from oxic to sub-oxic/anoxic conditions close to the sediment–water interface. Geochemical features of all types of cement were controlled by the sulphate-poor environment and by the absence of bacterial sulphate reduction. All types of cement present have d13C ranging between 0&and )15&(Vienna Peedee Belemnite, V-PDB), and highly variable and highly depleted d18O (down to 14& Vienna Standard Mean Ocean Water, V-SMOW). The late generation of cement is most depleted in both 13C and 18O. The geochemical and isotopic patterns are best explained by interaction between surface oxic waters, pore waters and underground, 18Odepleted, reducing, ice-meltwaters accumulated in the underlying coal-bearing sediments during the Permian deglaciation. The invariant d13C distribution across core-to-rim transects for each individual concretion is consistent with rapid lithification and involvement of a limited range of carbon sources derived via oxidation of buried plant material and from dissolved clastic carbonates. Syneresis of the cement during an advanced stage of lithification at early diagenesis is considered to be the cause of development of the septarian cracks. After cracking, the concretions retained a small volume of porosity, allowing infiltration of anoxic, Ba-bearing fluids, resulting in the formation of barite. The results obtained contribute to a better understanding of diagenetic processes at the shallow burial depths occurring in rift-bound, lacustrine depositional systems

    Upper Albian OAE 1D Event in the Chihuahua Trough, New Mexico, U.S.A.

    No full text
    Oceanic anoxic events are clues to ocean processes and are correlation datums. In North America only OAE 1a and 2 are well documented. Based on a low-resolution sampling program, a multi-proxy geochemical approach constrained by a biostratigraphic framework was utilized to identify OAE 1d in the upper part of the upper Albian Mesilla Valley Formation near El Paso, Texas. Chronostratigraphic and biostratigraphic evidence indicate that the OAE 1d event in the Mesilla Valley section is located in the lower part of the upper Albian–Cenomanian Ovoidinium verrucosum zone, which correlates with the uppermost Albian Parathalmanninella appenninica and Stoliczkaia dispar zones. The chronostratigraphic age of the geochemical event in the Mesilla Valley Formation is uppermost Albian (97.39–97.30 Ma). The classic geochemical signatures for OAEs are enriched total organic carbon (TOC) concentrations and coupled positive δ13C excursions. OAE 1d at this location records TOC values ranging from 0.25 to 0.69 wt.% throughout the Mesilla Valley Formation, where TOC increases during the OAE (21.0–40.0 m) to more than 0.40 wt.%. Interestingly, the organic matter in the Mesilla Valley is dominantly type III, which indicates a pervasive terrigenous source. Although marine organic matter is abundant from the base into the middle of the proposed OAE interval, it is progressively replaced by terrestrial material above the OAE section during progradation. The δ13Corganic values record a positive δ13C shift of +1.6‰ from −26.41 to −24.80‰ across the stratigraphic interval from 21.0 to 40.0 m, which correlates with OAE 1d. Mn and Fe geochemistry suggest the depositional conditions of the Mesilla Valley Formation were dominated by anoxic and possibly Fe-rich bottom waters, specifically during the time period associated with the OAE 1d event. This interpretation is supported by the presence of Fe enrichment recorded by FeTotal/Al and FeHighly Reactive/FeT with the lack of Fepyrite/FeHighly Reactive associated with Mn depletion
    corecore