103 research outputs found
Long term results of accelerated 9 mW corneal crosslinking for early progressive keratoconus: the Siena Eye-Cross Study 2
Purpose: To assess clinical results of the 9 mW/5.4 J/cm2 accelerated crosslinking (ACXL) in the treatment of progressive keratoconus (KC) over a span of 5 years.
Methods: The prospective open non-randomized interventional study (Siena Eye-Cross Study 2) included 156 eyes of 112 patients with early progressive KC undergoing the Epi-Off 9 mW/5.4 J/cm2 ACXL at the Siena Crosslinking Centre, Italy. The mean age was 18.05 ± 5.6 years. The 20-min treatments were performed using the New KXL I (Avedro, Waltham, USA), 10 min of 0.1% HPMC Riboflavin soaking (VibeX Rapid, Avedro, Waltham, USA) and 10 min of continuous-light UV-A irradiation. Uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), Kmax, coma, minimum corneal thickness (MCT), surface asymmetry index (SAI), endothelial cell count (ECC) were measured, and corneal OCT performed.
Results: UDVA and CDVA improved significantly at the 3rd (P = 0.028), Δ + 0.17 Snellen lines and 6th postoperative month, respectively (P < 0.001), Δ + 0.23 Snellen lines. Kmax improved at the 6th postoperative month (P = 0.03), Δ - 1.49 diopters from the baseline value. Also, coma aberration value improved significantly (P = 0.004). A mild temporary haze was recorded in 14.77% of patients without affecting visual acuity and without persistent complications. Corneal OCT revealed a mean demarcation line depth at 332.6 ± 33.6 μm.
Conclusion: The 5-year results of Epi-Off 9 mW/5.4 J/cm2 ACXL demonstrated statistically significant improvements in UCVA and CDVA, corneal curvature and corneal higher-order aberrations which confers a long-term stability for progressive ectasia. Based on the results of the Siena Eye-Cross Study 2, the 9 mW/5.4 J/cm2 ACXL is a candidate to be the natural evolution of Epi-Off CXL treatment for the management of early progressive corneal ectasia, and thus optimize clinic workflow
The meaning of the demarcation line after riboflavin-UVA corneal collagen crosslinking
Introduction: The demarcation line (DL) observed since the pioneering crosslink (CLX) protocol at the posterior edge of the cross-linked stroma has been universally accepted as a therapeutic milestone of treatment. Numerous laboratory and clinical CXL studies demonstrate that a deeper DL is associated with a higher amount and saturation level of crosslinks, a more pronounced stiffening effect, and a more durable ectasia stability. Areas covered: A critical revision of laboratory, clinical, and analytical studies on the DL depth supports the significance of the DL as an evaluator of the performance of CLX procedures in terms of biomechanical efficacy and safety avoiding extensive experiments. A mechanical approach based on experimental data shows that the DL depth obtained with different CXL protocols relates with an asymptotic non-linear increasing function to the modified biomechanical corneal stiffness (elastic modulus). Expert opinion: The strong connection between the depth of the DL and the increase of the biomechanical efficacy can be explained by means of UV cross-linking chemical investigations demonstrating that only a limited amount of free reactive collagen residues is involved in the short-wave UV-mediated CXL. Thus, the CXL density can rise only up to an upper boundary value, i.e. the saturation value
Improving precision for detecting change in the shape of the cornea in patients with keratoconus
To investigate a method for precision analysis to discriminate true corneal change from measurement imprecision in keratoconus (KC). Thirty patients with KC and 30 healthy controls were included. Coefficients of repeatability and limits of agreement (LOA) were compared using multiple measurements for inter-observer and inter-device agreement with the Pentacam HR, Orbscan IIz, and Tomey Casia SS-1000. Correlation of repeated measurements was evaluated using a linear mixed effect model (also called random effect model). A formula was derived for the theoretical expected change in precision and compared with measured change. Correlation between measurements from the same eye was small (R = 0.13). The 99.73% LOA (3 SD) of the mean of three measurements, provided better precision than 95% LOA (2 SD) of single cut-off values as expected from statistical theory for uncorrelated measurements for evidence of a significant change in corneal shape in patients with keratoconus. This enabled the determination of cut-off values for the detection of true change in corneal shape. The mean of three repeated measurements will provide better precision when there is minimal correlation. Three (rather than two) standard deviations provides a precise estimate of the LOA within or between observers and can be used as a reliable measure for identifying stage-independent corneal shape changes (progression) in keratoconus
Corneal melting after collagen cross-linking for keratoconus: a case report
<p>Abstract</p> <p>Introduction</p> <p>Corneal collagen cross-linking is a rather new technique that uses riboflavin and ultraviolet A light for collagen fiber stabilization in keratoconus corneas. Other than reversible side effects, the preliminary results of corneal collagen cross-linking studies suggest that it is a rather safe technique. In this report, we demonstrate a case of corneal melting after corneal collagen cross-linking for keratoconus corneas associated with an acute inflammatory response.</p> <p>Case presentation</p> <p>A 23-year-old Caucasian man with keratoconus cornea stage 1 to 2 underwent uneventful corneal collagen cross-linking treatment according to the Dresden protocol. The next day the patient had intense photophobia, watering and redness of the eye, and his visual acuity was limited to counting fingers. Slit lamp biomicroscopy revealed severe corneal haze accompanied by non-specific endothelial precipitates following an acute inflammatory response. Mild inflammation could be detected in the anterior chamber. Moreover, the re-epithelialization process could barely be detected. His corneal state gradually deteriorated, resulting in descemetocele and finally perforation.</p> <p>Conclusion</p> <p>In this report, we present a case of a patient with corneal melting after standard corneal collagen cross-linking treatment for keratoconus corneas following an acute inflammatory response. Despite modifying postoperative treatment, elaboration of all apparent associated causes by the treating physicians and undergoing extensive laboratory testing, the patient developed descemetocele, which led to perforation. Our report suggests that further research is necessary regarding the safety of corneal collagen cross-linking in keratoconus corneas.</p
- …