60 research outputs found

    Estimation of the local convective heat transfer coefficient in pipe flow using a 2D thermal Quadrupole model and Truncated Singular Value Decomposition

    Get PDF
    The techniques for solving the Inverse Heat Conduction Problem represent useful tools for designing heat transfer apparatuses. One of their most challenging applications derives from the necessity of catching what happens inside a heat transfer apparatus by monitoring the temperature distribution on the external wall of the device, possibly by means of contactless experimental methodologies. The research presented here deals with the application of a solution strategy of the Inverse Heat Conduction Problem (IHCP) aimed at estimating the local heat transfer coefficient on the internal wall surface of a pipe, under a forced convection problem. The solution strategy, formulated for a 2D model, is based on the Quadrupole Method (QM) coupled to the Truncated Singular Value Decomposition approach, used to cope with the ill-conditioning of the problem. QM presents some advantages over the more classical domain or boundary discretization methods as for instance the fact that, being meshless, brings to a reduction of the computational cost. The analytical model, built under the QM, is validated by means of numerical simulations and the numerical outputs are then used as synthetic data inputs to solve the IHCP. The estimation methodology is also applied to experimental data regarding a forced convection problem in coiled pipes. Moreover, the adopted solution technique is compared to other two well-known and consolidated approaches: Finite Element Method coupled to the Tikhonov Regularization Method and Gaussian Filtering Technique. The comparison highlights that, for the problem here investigated, the Quadrupole Method coupled to the Truncated Singular Value Decomposition and Finite Element Method coupled to the Tikhonov Regularization Method perform better than the Gaussian Filtering Technique when the noise level is low, while, for higher noise level values, their efficiency is almost comparable, as it happens in the considered experimental study case

    Experimental estimation of local heat-transfer coefficient in coiled tubes with corrugated wall

    Get PDF
    The present paper presents the application of an inverse analysis approach to experimental infrared temperature data with the aim of estimating the local convective heat transfer coefficient for forced convection flow in coiled pipe having corrugated wall. The estimation procedure here adopted is based on the solution of the inverse heat conduction problem within the wall domain by adopting the temperature distribution on the external coil wall as input data of the inverse problem: the unwanted noise in filtered out from the infrared temperature maps in order to make feasible the direct calculation of its Laplacian, embedded in the formulation of the inverse heat conduction problem in which the convective heat transfer coefficient is regarded to be unknown. Preliminary results are presented and discussed

    Inverse estimation of the local heat transfer coefficient in curved tubes: a numerical validation

    Get PDF
    Wall curvature represents one of the most used passive techniques to enhance convective heat transfer. The effectiveness of wall curvature is due to the fact that it gives origin to the centrifugal force: this phenomenon induces local maxima in the velocity distribution that locally increase the temperature gradients at the wall by then maximizing the heat transfer. This fact brings to a significant variation of the wall temperature and of the wall heat flux along the circumferential coordinate. The convective heat transfer coefficient is consequently not uniformly distributed along the tube's perimeter and is characterized by higher values at the extrados wall surface in comparison to the ones at the intrados wall surface. Therefore, for predicting the overall performance of heat transfer apparatuses that involve the use of curved tubes, it becomes important to know the local distribution of the convective heat transfer coefficient not only along the axis of the heat transfer section, but also on the internal tube's surface along the cross section circumference. The present paper is intended to the assessment of a procedure developed to evaluate the local convective heat transfer coefficient, along the circumferential coordinate, at the internal wall of a coiled pipe

    Parameter estimation approach to the thermal characterization of intumescent fire retardant paints

    Get PDF
    Intumescent paints are widely used as passive fire retardant materials in the building sector. They swell on heating to form a highly insulating char, protecting steel members. Intumescent coatings for use in buildings are typically certified according to the standard cellulosic fire resistance test. This test is expensive, often non-representative of realistic fire conditions, and not enough versatile to gather detailed performance information on the response of reactive coatings. A promising approach, that could offer a helpful tool to the engineering community involved in fire safety, is found in the modelling of the behaviour of the intumescent coating. Under this approach, the knowledge of the equivalent thermal conductivity of the intumescent material is a fundamental issue, since it represents the main parameter that allows predicting the thermal protecting capability of the layer. The purpose of this paper is to optimize an estimation procedure intended to the restoration of the equivalent thermal conductivity of intumescent layers. The thermal stress is activated by the action of a cone calorimetric apparatus, while the estimation procedure is based on the inverse heat conduction problem approach under steady state assumption, where the temperature values measured at some locations inside the layer during the expansion process are used as input known data. This procedure was successfully applied to steel samples protected with an intumescent paint; the estimated equivalent thermal conductivity of the layer results to temperature dependent while the initial thickness of the paint does not seem to have a great effect

    COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study

    Get PDF
    Background: The ISARIC prospective multinational observational study is the largest cohort of hospitalized patients with COVID-19. We present relationships of age, sex, and nationality to presenting symptoms. Methods: International, prospective observational study of 60 109 hospitalized symptomatic patients with laboratory-confirmed COVID-19 recruited from 43 countries between 30 January and 3 August 2020. Logistic regression was performed to evaluate relationships of age and sex to published COVID-19 case definitions and the most commonly reported symptoms. Results: ‘Typical’ symptoms of fever (69%), cough (68%) and shortness of breath (66%) were the most commonly reported. 92% of patients experienced at least one of these. Prevalence of typical symptoms was greatest in 30- to 60-year-olds (respectively 80, 79, 69%; at least one 95%). They were reported less frequently in children (≀ 18 years: 69, 48, 23; 85%), older adults (≄ 70 years: 61, 62, 65; 90%), and women (66, 66, 64; 90%; vs. men 71, 70, 67; 93%, each P < 0.001). The most common atypical presentations under 60 years of age were nausea and vomiting and abdominal pain, and over 60 years was confusion. Regression models showed significant differences in symptoms with sex, age and country. Interpretation: This international collaboration has allowed us to report reliable symptom data from the largest cohort of patients admitted to hospital with COVID-19. Adults over 60 and children admitted to hospital with COVID-19 are less likely to present with typical symptoms. Nausea and vomiting are common atypical presentations under 30 years. Confusion is a frequent atypical presentation of COVID-19 in adults over 60 years. Women are less likely to experience typical symptoms than men

    DYNAMIC THERMAL SIMULATION OF A GLASS-COVERED SEMI-OUTDOOR SPACE WITH ROOF EVAPORATIVE COOLING

    No full text
    In the hot season solar radiation impinging on a glass roofing may overheat the underneath space to temperature values which may generate a high stress environment. To moderate the extreme microclimate which may occur in a glass covered semi-outdoor space, evaporative cooling to be applied to the glass roof is suggested. The analysis is performed under both the thermal and the energetic point of view, by accounting for the actual climate of the considered location. The results point out that roof evaporative cooling coupled with glass sheet high solar radiation absorptivity may offer an attractive way for the control of a semi-outdoor environment
    • 

    corecore