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Abstract. Wall curvature represents one of the most used passive techniques to enhance 

convective heat transfer. The effectiveness of wall curvature is due to the fact that it gives 

origin to the centrifugal force: this phenomenon induces local maxima in the velocity 

distribution that locally increase the temperature gradients at the wall by then maximizing the 

heat transfer. This fact brings to a significant variation of the wall temperature and of the wall 

heat flux along the circumferential coordinate. The convective heat transfer coefficient is 

consequently not uniformly distributed along the tube’s perimeter and is characterized by 

higher values at the extrados wall surface in comparison to the ones at the intrados wall 

surface. Therefore, for predicting the overall performance of heat transfer apparatuses that 

involve the use of curved tubes, it becomes important to know the local distribution of the 

convective heat transfer coefficient not only along the axis of the heat transfer section, but also 

on the internal tube’s surface along the cross section circumference. The present paper is 

intended to the assessment of a procedure developed to evaluate the local convective heat 

transfer coefficient, along the circumferential coordinate, at the internal wall of a coiled pipe. 

1. Introduction 

Among the most used passive techniques to enhance convective heat transfer, wall curvature is found. 

The effectiveness of wall curvature is due to the fact that it gives origin to the centrifugal force: this 

phenomenon induces local maxima in the velocity distribution that locally increase the temperature 

gradients at the wall by then maximizing the heat transfer [1-3]. The asymmetrical distribution of the 

velocity field over the tube’s cross-section leads to a significant variation of the wall temperature and 

of the wall heat flux along the circumferential coordinate: the convective heat transfer coefficient is 

then not uniformly distributed along the tube’s perimeter but it presents higher values at the extrados 

wall surface in comparison to the ones registered at the intrados wall surface. 

This irregular distribution could be critical in some industrial application, such as in the ones that 

involve a thermal process. For instance, in food pasteurization, the irregular temperature field induced 

by the wall curvature could reduce the bacteria heat-killing or could locally overheat the product. 

Therefore, in order to predict the overall performance of heat transfer apparatuses that involve the use 

of curved tubes it is necessary to know the local distribution of the convective heat transfer coefficient 
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not only along the axis of the heat transfer section, but also on the internal tube’s surface along the 

cross section circumference. 

Although many Authors have investigated the forced convective heat transfer in coiled tubes, most 

of them have presented the results only in terms of the Nusselt number averaged along the wall 

circumference: only few Authors have studied the phenomenon locally. Jayakumar et al.[4] 

numerically analyzed the turbulent heat transfer in helically coiled tubes and presented the local 

Nusselt number at various cross sections along the curvilinear coordinate. The results showed that, on 

any cross section, the highest Nusselt number is on the outer side of the coil, while the lowest one is 

expected on the inner sides. Moreover, the Authors proposed a correlation for predicting the local 

Nusselt number as a function of average Nusselt number and angular location for both constant 

temperature and constant heat flux boundary conditions. Bai et al. [5] studied experimentally the 

turbulent heat transfer in helically coiled tubes using deionized water as working fluid. As expected 

they found out that the local heat transfer coefficient was not evenly distributed along the periphery on 

the cross section and that in particular, at the outside surface of the coil it was up to four times than 

that at the inside surface.  One of the most promising way to estimate the local convective heat transfer 

coefficient on the interior wall surface of a solid domain is found in the solution of the inverse heat 

conduction problem (IHCP) in the wall, starting from the temperature distribution acquired on the 

external wall surface [6]. However IHCPs generally present some complications due to the fact that 

they are ill-posed: this entails that they show a great sensitiveness to small variations in the input data. 

In order to find a solution to this problem many methods based on a numerical approach have been 

improved: among these techniques the conjugate gradient iterative method based on the adjoint 

problem [7], the Laplace transform method [6], the direct sensitivity coefficient method [8], the space 

marching method [9], the sequential function specification method [10], the maximum entropy method 

[11],  the Tikhonov regularization method [12] and the filtering technique [13-14] are found. 

Tikhonov method is perhaps the most common used regularization technique: it is based on the 

minimization of an object function in order to reformulate the IHCP as a well-posed problem. The 

object function is expressed by the sum of the squared difference between measured and estimated 

temperature discrete data and of a regularization parameter times a term that expresses the smoothness 

of the unknown quantity. This regularization scheme, originally suggested by Tikhonov and Arsenin 

[12], enables to overcome the problem’s instability in case of particularly critical signal to noise ratio 

and it proved to be very successful, although the selection of the regularization parameter requires 

some care.  

 

2. Problem’s definition  

A typical condition in which curved tubes are tested is the one in which the convective heat transfer 

within the fluid that flows inside the tube occurs under the uniform heat flux boundary conditions, 

such as the one considered by Rainieri et al. [1,15] in their experimental investigations where a heat 

flux was dissipated by Joule effect directly within the tube wall. 

 

  

 
Figure 1: Coiled tube. 

 

31st UIT (Italian Union of Thermo-fluid-dynamics) Heat Transfer Conference 2013 IOP Publishing
Journal of Physics: Conference Series 501 (2014) 012002 doi:10.1088/1742-6596/501/1/012002

2



 

In order to evaluate the local actual value of the convective heat transfer coefficient at the fluid 

internal wall interface on a given cross section (as highlighted in figure 1) the following procedure 

could be followed: the temperature distribution is acquired on the external wall surface on a given test 

section and then the IHCP in the wall domain is solved by considering the convective heat transfer 

coefficient distribution on the internal wall surface to be unknown.  

The temperature on the external side could be acquired by using thermocouples, located along the 

circumference of the text section or more suitably by adopting an infrared thermographic system.  

In order to test the above described parameter estimation procedure a simplified 2-D numerical 

model of the test section (sketched in figure 2) was formulated by assuming that along the axis of the 

tube the temperature gradient is almost negligible. 

In the 2-D solid domain the steady state energy balance equation is expressed in the form: 

 

 

 

 

  
  
  

  
  

 

  
 

  
 
  

  
       (1) 

 

where qg is the heat generated per unit volume and k is the tube wall thermal conductivity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The following two boundary conditions completed the energy balance equation: 

 

 
  

  
              (2) 

 

that is applied on surface     and where    is the overall heat transfer coefficient between the tube 

wall and the surrounding environment with the temperature Te ; 

  
  

  
                (3) 

that is applied on surface    and where    is the bulk fluid temperature and hint is the local 

convective heat transfer coefficient at the fluid- internal wall interface. 

 

Figure 2. Geometrical domain with coordinate 

system. 
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From the knowledge of the total wall heat flux and by measuring the temperature of the fluid at the 

inlet section, it is possible to calculate the bulk fluid temperature on the tube’s cross-section by 

imposing that the energy balance is satisfied. 

 

3. Parameter estimation procedure 

The parameter estimation procedure is embedded in the inverse solution of the problem expressed by 

equations (1-3). The temperature distribution on the external surface of the section,               , 
can be easily computed numerically, by imposing a trial convective heat transfer coefficient 

distribution on the internal wall side     .  
In the inverse formulation of problem, this computed temperature distribution is forced to match 

the experimental temperature distribution     , by tuning the convective heat transfer coefficient 

distribution on the internal wall side,         .The matching of the two temperature distributions (the 

computed and the experimentally acquired) could be easily performed under a least square approach. 

To overcome the ill-posed nature of the problem and in particular its ill-conditioned character the 

Tikhonov regularization method is adopted [12]. This approach, successfully applied in literature [16] 

allows to reformulate the problem as a well-posed problem by minimizing the following objective 

function: 

 

                                   
              

  (4) 

 

where  is the regularization parameter, D is the derivative operator and                is the 

distribution of external surface temperature derived from direct numerical solution of the problem 

obtained by imposing a convective heat transfer coefficient distribution on the internal wall side     . 
Often D is the zero, first or second derivative operator: in this work the second derivative formulation 

was chosen in order to preserve local variation of heat transfer coefficient distribution. Under this 

assumption the object function becomes: 

 

                                   
     

         

   
 
 

 

 (5) 

 

The above function represents a trade-off  between two optimization processes: agreement between 

the data and solution and smoothness or stability of the solution. Thus, an appropriate choice of  

should give an optimal balance. The importance of the choice of the regularization parameter was 

analyzed by Bazàn and Borges [17]. Choosing an high regularization parameter means to impose too 

much regularization to the solution prejudicing the fitting of the data and obtaining a great residual; 

the absence of regularization or a too small regularization parameter will bring to a good fitting but 

also to a solution affected by the data errors. This idea has led to the development of the L-curve, 

which was first proposed by Hansen and O’Leary [18]. This method defines the ideal regularization 

parameter by locating the ‘corner’ on a plot of the function of the norm of the second derivative of 

computed convective heat transfer coefficient,             
    , versus the norm of the difference 

between experimental and computed temperature values,                       .  

In the present analysis in order to limit the number of  degrees of freedom in the inverse problem 

approach, the convective heat transfer distribution was simplified by considering a continuous 

piecewise linear function composed of six sections as follows:   
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(6) 

where b0 b1 b2 b3  b4 b5  values become the six unknowns of the inverse problem. 

 

4. Results and discussion 

The objective of this paper was to validate the above described procedure of estimation of the local 

convective heat transfer coefficient. The physical parameters used in this work correspond to the ones 

of a stainless steel type AISI 304. For what concern the geometrical parameters an internal radius    of 

7 mm and an external radius    of 8 mm were considered. The validation of the procedure was 

performed by adopting synthetic data. By imposing a known distribution of      and by solving the 

governing equations (1-3), a synthetic temperature distribution on the external wall surface was 

obtained. For the local convective heat transfer coefficient, two different distributions      
    

and     
    according to the data of Jayakumar et al. [4] and shown in figures 3-4, were considered.  

The two distributions were derived by numerical simulations performed under the turbulent flow 

regime and they have been chosen in this work because they represent two extreme cases: the former 

distribution, that corresponds to a representative axial location in the thermal entry region, is almost 

flat and it is characterized by a maximum to minimum value ratio of about 1.3,  the latter, that 

corresponds to the thermally fully developed region, shows a significant variation along the curvilinear 

coordinate and it is characterized by a maximum to minimum value ratio of about 5. Then the 

synthetic temperature distribution on the external wall surface, deliberately spoiled by random noise, 

was used as the input data of the inverse problem. In particular, a white noise characterized by a 

standard deviation of 0.1 was considered. By solving the inverse problem, i.e. by forcing the external 

surface temperature                to match the synthetic temperature distribution     , it’s 
possible to restore the convective heat transfer coefficient distribution on the internal wall side 

       , that is the only term unknown.  

The         distribution found was then compared to the distribution used to obtain the synthetic 

temperature      in order to evaluate the effectiveness of the parameter estimation procedure. 

Given the symmetry of the two distributions of the convective heat transfer coefficient, the number 

of the  unknown variables reduces to four, being        and      . This enabled to further reduce 

the computational cost of the minimization algorithm. 
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Figure 3. First distribution of the local convective 

heat transfer coefficient       
      

(Jayakumar et al. [4]). 

Figure 4. Second distribution of the local 

convective heat transfer coefficient      
       

 (Jayakumar et al. [4]). 

 

The direct problem was solved by finite element method implemented in Comsol Multiphysics® 

environment with a mesh of about 2400 triangular elements while the minimization of Tikhonov target 

function was run within the Matlab Optimization Toolbox® by using as stopping criterion a relative 

tolerance on object function lower than 1e-004. The algorithm adopted in the minimization process is 

the Nelder-Mead algorithm [19] that represents one of the best known solution for multidimensional 

unconstrained optimization.   

In figure 5 the L-curve for the distribution      
    is shown. Following the above described L-

curve method, the optimal value  = 0.0003, corresponding to the ‘corner’ of the curve, was identified. 

  

Figure 5. L-curve for distribution      
   . Figure 6. Restored and exact local heat transfer 

coefficient distribution (     
   ,  = 0.0003). 

 

In figure 6 the heat transfer coefficient distribution, restored by adopting the regularization 

parameter   = 0.0003, is reported and compared to  the exact value.  
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The restored values matched with a good approximation the original local heat transfer 

distribution         , by demonstrating the robustness of the procedure presented in this paper. 

In figure 7 the restored temperature distribution resulting from the minimization procedure, 

implemented by considering  = 0.0003, is shown. The data confirm that, by adopting the optimal 

regularization parameter, the Tikhonov scheme enables to filter out the noise from the raw input signal 

by restoring the smoothest approximate solution compatible with the experimental data within a given 

noise level [13,14]. 

 

 

 

 

Figure 7. Restored temperature distribution  

(          ,  = 0.0003 ). 

 

 

It is well known that the smoothness is controlled by the choice of the regularization parameter:  if 

the regularization parameter is not the correct one the problem’s ill-conditioned character could lead to 

an incorrect solution. For instance by considering the values  = 0 and  = 0.1, corresponding to the 

two extreme values of the L-curve, the local heat transfer coefficient obtained from minimization of 

the function given by equation (4) doesn’t match the exact distribution as it is shown in figures 8 and 

9.  

In both cases ( = 0 and  = 0.1) the parameter estimation procedure fails by proving that the 

selection of the regularization parameter is a critical task within Tikhonov regularization: if it is too 

small the filtering of the raw signal is too weak, while if it is too large the regularized solution is over-

smoothed.    

The same procedure was applied to the second local heat transfer coefficient distribution     
   

: 

the L-curve is reported for this case in figure 10 and the optimal value of   chosen, corresponding to 

the ‘corner’ of the curve  resulted  = 0.0002. 
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Figure 8. Restored and exact local heat transfer 

coefficient (     
     ,  = 0 ) 

Figure 9. Restored and exact local heat 

transfer coefficient (     
   ,  = 0.1 ). 

 

  

Figure 10. L-curve for distribution     
   

 Figure 11. Restored and exact local heat transfer 

coefficient (    
       = 0.0002). 

 

The restored values of local heat transfer coefficient are reported in figure 11.  Also in this case 

there is a good matching between the restored and the exact distributions when the regularization 

parameter is identified by means of the L-curve method. In order to highlight the effect of the choice 

of the regularization parameter a residual analysis could be performed by plotting the estimation error, 

defined as follows: 

  
                                   

 

                 

  

 

(7) 

versus the regularization parameter . 

The estimation error is reported in figure 12 against the regularization parameter  for the 

representative case corresponding to the distribution     
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minimum error corresponds to the optimal  value, that for this case was identified equal to 0.0002 by 

the L-curve method. Moreover, these data confirm the necessity of the regularization scheme for 

enhancing the parameter estimation accuracy. 

 

Figure 12. Estimation error for the distribution     
     

 

5. Conclusions 

In the present paper a procedure to estimate the local convective heat transfer coefficient along the 

circumferential coordinate at the internal wall of a coiled pipe and based on the solution of the Inverse 

Heat Conduction Problem (IHCP) was presented and validated. This problem could be particularly 

interesting in applications that require the knowledge of the local heat transfer distribution at the fluid-

wall interface, such as in food industries. 

The validation of the procedure was here performed throughout its application to numerical data.  

A simplified  2-D numerical model of the test section was formulated by assuming that along the 

axis of the tube the temperature gradient is almost negligible. A synthetic temperature distribution on 

the external wall surface was then obtained by imposing a given distribution of the local convective 

heat transfer coefficient on the internal side of the wall. Regarding the distribution of the local 

convective heat transfer coefficient, the results of Jayakumar et al. [4] were considered. The synthetic 

temperature distribution on the external wall surface, deliberately spoiled by random noise, was then 

used as the input data of the inverse problem. The IHCP solution was derived by the Tikhonov 

regularization technique coupled to the L-curve method. 

The results showed that the restored values of the convective heat transfer coefficient match with a 

good approximation with the exact distribution, by demonstrating the robustness of the here addressed 

parameter estimation procedure. The results enabled also to highlight the criticality associated to the 

choice of the regularization parameter successfully identified by the L-curve method. A necessary 

further step of the research is the application of the estimation procedure to real experimental data. 

 

Nomenclature 

Symbol Quantity SI Unit 

E Estimation error, equation (7) - 

h Convective heat transfer coefficient W/m
2
K 

k Thermal conductivity W/mK 

qg Internal heat generation per unit volume W/m
3
 

r Radial coordinate m 

T Temperature K 
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                Overall heat transfer coefficient W/m
2
K 

      Angular coordinate rad 

λ Regularization parameter 

 

- 

Subscripts   

b bulk  

e external  

i,int internal  
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