284 research outputs found

    A small-molecule catalyst of protein folding in vitro and in vivo

    Get PDF
    AbstractBackground: The formation of native disulfide bonds between cysteine residues often limits the rate and yield of protein folding. The enzyme protein disulfide isomerase (PDI) catalyzes the interchange of disulfide bonds in substrate proteins. The two -Cys-Gly-His-Cys- active sites of PDI provide a thiol that has a low pKa value and a disulfide bond of high reduction potential (E°').Results: A synthetic small-molecule dithiol, (±)-trans-1,2-bis(2-mercaptoacetamido)cyclohexane (BMC), has a pKa value of 8.3 and an E°' value of −0.24 V. These values are similar to those of the PDI active sites. BMC catalyzes the activation of scrambled ribonuclease A, an inactive enzyme with non-native disulfide bonds, and doubles the yield of active enzyme. A monothiol analog of BMC, N-methylmercaptoacetamide, is a less efficient catalyst than BMC. BMC in the growth medium of Saccharomyces cerevisiae cells increases by > threefold the heterologous secretion of Schizosaccharomyces pombe acid phosphatase, which has eight disulfide bonds. This effect is similar to that from the overproduction of PDI in the S. cerevisiae cells, indicating that BMC, like PDI, can catalyze protein folding in vivo.Conclusions: A small-molecule dithiol with a low thiol pKa value and high disulfide E°' value can mimic PDI by catalyzing the formation of native disulfide bonds in proteins, both in vitro and in vivo

    Structure and Function of Bacillus subtilis YphP, a Prokaryotic Disulfide Isomerase with a CXC Catalytic Motif†,‡

    Get PDF
    ABSTRACT: The DUF1094 family contains over 100 bacterial proteins, all containing a conserved CXCmotif, with unknown function. We solved the crystal structure of the Bacillus subtilis representative, the product of the yphP gene. The protein shows remarkable structural similarity to thioredoxins, with a canonical RβRβRββR topology, despite low amino acid sequence identity to thioredoxin. The CXC motif is found in the loop immediately downstream of the first β-strand, in a location equivalent to the CXXC motif of thioredoxins, with the first Cys occupying a position equivalent to the first Cys in canonical thioredoxin. The experimentally determined reduction potential of YphP is E0 =-130 mV, significantly higher than that of thioredoxin and consistent with disulfide isomerase activity. Functional assays confirmed that the protein displays a level of isomerase activity that might be biologically significant.We propose a mechanism by which the members of this family catalyze isomerization using the CXC catalytic site. The Bacillus subtilis yphP gene codes for a member of a superfamily of over 100 prokaryotic, highly conserved proteins (DUF1094), found predominantly in Firmicutes such as Staphy

    Differential membrane binding of α/β-peptide foldamers: implications for cellular delivery and mitochondrial targeting

    Get PDF
    The intrinsic pathway of apoptosis is regulated by the Bcl-2 family of proteins. Inhibition of the anti-apoptotic members represents a strategy to induce apoptotic cell death in cancer cells. We have measured the membrane binding properties of a series of peptides, including modified α/β-peptides, designed to exhibit enhanced membrane permeability to allow cell entry and improved access for engagement of Bcl-2 family members. The peptide cargo is based on the pro-apoptotic protein Bim, which interacts with all anti-apoptotic proteins to initiate apoptosis. The α/β-peptides contained cyclic β-amino acid residues designed to increase their stability and membrane-permeability. Dual polarisation interferometry was used to study the binding of each peptide to two different model membrane systems designed to mimic either the plasma membrane or the outer mitochondrial membrane. The impact of each peptide on the model membrane structure was also investigated, and the results demonstrated that the modified peptides had increased affinity for the mitochondrial membrane and significantly altered the structure of the bilayer. The results also showed that the presence of an RRR motif significantly enhanced the ability of the peptides to bind to and insert into the mitochondrial membrane mimic, and provide insights into the role of selective membrane targeting of peptides

    Stringency of the 2-His–1-Asp Active-Site Motif in Prolyl 4-Hydroxylase

    Get PDF
    The non-heme iron(II) dioxygenase family of enzymes contain a common 2-His–1-carboxylate iron-binding motif. These enzymes catalyze a wide variety of oxidative reactions, such as the hydroxylation of aliphatic C–H bonds. Prolyl 4-hydroxylase (P4H) is an α-ketoglutarate-dependent iron(II) dioxygenase that catalyzes the post-translational hydroxylation of proline residues in protocollagen strands, stabilizing the ensuing triple helix. Human P4H residues His412, Asp414, and His483 have been identified as an iron-coordinating 2-His–1-carboxylate motif. Enzymes that catalyze oxidative halogenation do so by a mechanism similar to that of P4H. These halogenases retain the active-site histidine residues, but the carboxylate ligand is replaced with a halide ion. We replaced Asp414 of P4H with alanine (to mimic the active site of a halogenase) and with glycine. These substitutions do not, however, convert P4H into a halogenase. Moreover, the hydroxylase activity of D414A P4H cannot be rescued with small molecules. In addition, rearranging the two His and one Asp residues in the active site eliminates hydroxylase activity. Our results demonstrate a high stringency for the iron-binding residues in the P4H active site. We conclude that P4H, which catalyzes an especially demanding chemical transformation, is recalcitrant to change

    The collagen prolyl hydroxylases are bifunctional growth regulators in melanoma

    Get PDF
    Appropriate post-translational processing of collagen requires prolyl hydroxylation, catalyzed by the prolyl 3- (C-P3H) and prolyl 4- (C-P4H) hydroxylases is essential for normal cell function. Here we have investigated the expression, transcriptional regulation and function of the C-P3H and C-P4H families in melanoma. We show that the CP3H family exemplified by Leprel1 and Leprel2 are subject to methylation-dependent transcriptional silencing in primary and metastatic melanoma consistent with a tumour suppressor function. In contrast, although there is transcriptional silencing of P4HA3 in a sub-set of melanomas, the CP4H family members P4HA1, P4HA2 and P4HA3 are often over-expressed in melanoma, expression being prognostic of worse clinical outcomes. Consistent with tumour suppressor function, ectopic expression of Leprel1 and Leprel2 inhibits melanoma proliferation, whereas P4HA2 and P4HA3 increase proliferation and particularly invasiveness of melanoma cells. Pharmacological inhibition with multiple selective C-P4H inhibitors reduces proliferation and inhibits invasiveness of melanoma cells. Together, our data identify the C-P3H and C-P4H families as potentially important regulators of melanoma growth and invasiveness and suggest that selective inhibition of C-P4H is an attractive strategy to reduce the invasive properties of melanoma cells

    Ribonuclease A

    No full text

    Site-Specific Antibody Functionalization Using Tetrazine–Styrene Cycloaddition

    No full text
    Biologics, such as antibody-drug conjugates, are becoming mainstream therapeutics. Consequently, methods to functionalize biologics without disrupting their native properties are essential for identifying, characterizing, and translating candidate biologics from the bench to clinical practice. Here, we present a method for site-specific, carboxy-terminal modification of single-chain antibody fragments (scFvs). ScFvs displayed on the surface of yeast were isolated and functionalized by combining intein-mediated expressed protein ligation (EPL) with inverse electron-demand Diels-Alder (IEDDA) cycloaddition using a styrene-tetrazine pair. The high thiol concentration required to trigger EPL can hinder the subsequent chemoselective ligation reactions; therefore, the EPL reaction was used to append styrene to the scFv, limiting tetrazine exposure to damaging thiols. Subsequently, the styrene-functionalized scFv was reacted with tetrazine-conjugated compounds in an IEDDA cycloaddition to generate functionalized scFvs that retain their native binding activity. Rapid functionalization of yeast surface-derived scFv in a site-directed manner could find utility in many downstream laboratory and preclinical applications.National Institutes of Health (U.S.) (Grant T32 GM007215)National Science Foundation (U.S.) ( Grant CBET1403350

    Enzyme-Activated Fluorogenic Probes for Live-Cell and in Vivo Imaging

    No full text
    Fluorogenic probes, small-molecule sensors that unmask brilliant fluorescence upon exposure to specific stimuli, are powerful tools for chemical biology. Those probes that respond to enzymatic catalysis illuminate the complex dynamics of biological processes at a level of spatiotemporal detail and sensitivity unmatched by other techniques. Here, we review recent advances in enzyme-activated fluorogenic probes for biological imaging. We organize our survey by enzyme classification, with emphasis on fluorophore masking strategies, modes of enzymatic activation, and the breadth of current and future applications. Key challenges such as probe selectivity and spectroscopic requirements are described alongside therapeutic, diagnostic, and theranostic opportunities. Keywords: cells; peptides and proteins; imaging probes; fluorescence; probesNational Institutes of Health (U.S.) (Grant R01 GM044783)National Institutes of Health (U.S.) (Grant R01 CA073808
    corecore