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Abstract 

 

Appropriate post-translational processing of collagen requires prolyl hydroxylation, catalyzed by the 

prolyl 3- (C-P3H) and prolyl 4- (C-P4H) hydroxylases is essential for normal cell function. Here we 

have investigated the expression, transcriptional regulation and function of the C-P3H and C-P4H 

families in melanoma. We show that the CP3H family exemplified by Leprel1 and Leprel2 are subject 

to methylation-dependent transcriptional silencing in primary and metastatic melanoma consistent with 

a tumour suppressor function. In contrast, although there is transcriptional silencing of P4HA3 in a sub-

set of melanomas, the CP4H family members P4HA1, P4HA2 and P4HA3 are often over-expressed in 

melanoma, expression being prognostic of worse clinical outcomes. Consistent with tumour suppressor 

function, ectopic expression of Leprel1 and Leprel2 inhibits melanoma proliferation, whereas P4HA2 

and P4HA3 increase proliferation and particularly invasiveness of melanoma cells. Pharmacological 

inhibition with multiple selective C-P4H inhibitors reduces proliferation and inhibits invasiveness of 

melanoma cells. Together, our data identify the C-P3H and C-P4H families as potentially important 

regulators of melanoma growth and invasiveness and suggest that selective inhibition of C-P4H is an 

attractive strategy to reduce the invasive properties of melanoma cells. 
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Introduction  

 

Melanoma is an aggressive skin cancer with a high metastatic potential. Cytotoxic drugs are rarely 

effective in melanoma but targeted agents and immunotherapy have improved prognosis (Robert et al., 

2015; Koeblinger et al., 2017). Notwithstanding these developments, prognosis for many patients with 

advanced melanoma remains poor and novel therapeutic strategies continue to be urgently required.  

Alterations in the properties of the basement membrane are a recognized feature of cancer cells. 

Collagen, the principal structural component (Shoulders and Raines, 2009), must undergo appropriate 

post-translational processing for efficient function and this requires the activities of the prolyl 3-

hydroxylases (C-P3Hs) and prolyl 4-hydroxylases (C-P4Hs). The C-P3H Leprecan Like 1 (Leprel1, 

P3H2) has been shown to participate in the processing of basement membrane collagens such as type 

IV collagen (Fernandes et al., 2011) but the substrate specificity of Leprel2 is unknown. Like the C-

P3H proteins, the prolyl 4-hydroxylases also have important functions in collagen synthesis 

(Myllyharju, 2008; Gorres and Raines, 2010). In contrast to the C-P3Hs, the C-P4Hs are tetrameric 

proteins comprising 2 α and 2 β subunits. P4HA1, P4HA2 and P4HA3 encode the catalytic α subunits 

of the three C-P4H proteins, whilst a common β subunit is encoded by P4HB. P4HA1 and P4HA2 have 

been well studied but little is known of the functions of P4HA3 since its molecular cloning (Van Den 

Diepstraten et al., 2003). We have previously shown that C-P3H genes are tumour suppressors, subject 

to methylation-dependent transcriptional silencing in breast cancer (Shah et al., 2009). In non-

Hodgkin’s lymphoma (NHL) C-P3H and C-P4H genes are silenced by methylation at high frequencies, 

with distinct patterns of methylation in different lymphoma types (Hatzimichael et al., 2012). P4HA2 is 

a direct transcriptional target for p53 suggesting a tumour suppressor function (Teodoro et al., 2006). 

Conversely, a recent study found P4HA1 and P4HA2 to be essential for breast cancer metastasis 

(Gilkes et al., 2013). 

Changes in the genome and epigenome of melanoma cells that drive metastasis remain incompletely 

described. Evidence from our own and others’ studies show that changes in CpG island methylation 

occur in metastatic melanoma. For example, increased methylation in the CpG island of TFPI2 is 

associated with metastatic melanoma (Tanemura et al., 2009; Lo Nigro et al., 2013) whereas the 

opposite effect is seen with NT5E (Wang et al., 2012).  

  

Here, we have analysed the expression, regulation and function of the collagen prolyl hydroxylase 

genes in melanoma. 
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Results 

 

C-P3H and C-P4H genes are epigenetically regulated in melanoma cell lines 

 

We examined mRNA expression of the C-P3H (Leprel1 and Leprel2) and C-P4H (P4HA1, P4HA2, 

P4HA3 and P4HB) encoding genes in a panel of melanoma cell lines (Figure 1). Leprel1 was expressed 

in the RGP melanoma WM35 and PMWK and in WM266.4 and the metastatic melanoma cell lines 

SKMEL224, SKMEL505 and C8161 but was undetectable in SBCL2, SKMEL2, SKMEL23, 

SKMEL147 and SKMEL501 (Figure 1). Leprel2 was more abundantly expressed across the cell line 

panel but not detectable in SBCL2, SKMEL224 and SKMEL501 (Figure 1). P4HB (encoding the β 

subunit common to all C-P4H proteins) was detectable in all cell lines (Figure 1). Similarly, P4HA1 

and P4HA2 mRNA was detectable in all cell lines. In contrast to the other C-P4H encoding genes, 

P4HA3 was undetectable in some cell lines (SBCL2 (RGP melanoma), SKMEL23, SKMEL30, 

SKMEL505 and C8161) and detectable only at very low levels in SKMEL147, SKMEL224 and 

WM266.4. Of note, in each of these cell lines with undetectable or extremely low expression of 

P4HA3, there was correspondingly moderate to high expression of P4HA1 and especially P4HA2 

(Figure 1). 

 

A CpG island is located in the upstream regulatory sequences of all examined genes and we used 

pyrosequencing to quantitatively test for methylation. Representative pyrograms are shown in 

Supplementary Figure 1 and full methylation profiles in Supplementary Figure 2. Each gene was 

unmethylated in normal melanocytes. Dense methylation in Leprel1 was detected in SKMEL2, 

SKMEL23 and SKMEL50 and in Leprel2 in SBCL2, PMWK and SKMEL50. The P4HA1 CpG island 

was uniformly unmethylated and, similarly, P4HA2 was generally unmethylated, but we did detect 

methylation in SKMEL23 and SKMEL30. However, this did not correlate with reduced expression 

(Figure 1). There was, however, a good correlation between methylation in the P4HA3 CpG island and 

down-regulation of expression with dense methylation in SBCL2, WM902.6, SKMEL505, SKMEL23, 

SKMEL30, SKMEL147 and C8161. P4HA3 expression was undetectable in all these lines with the 

exception of WM902.6 in which expression was reduced relative to unmethylated cell lines such as 

Colo829. Correlation analysis demonstrated that expression of P4HA3 was negatively associated with 

methylation (r=-0.5496; p=0.0417) (Figure 2a). Leprel1 and Leprel 2 also demonstrated a negative 

correlation (r=-0.3572 and r=-0.4201 respectively). Although this did not quite reach statistical 
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significance, it is clear that the presence of dense CpG island methylation is associated with low to no 

expression for both genes. For example, the 3 cell lines which have dense CpG island methylation in 

Leprel1 (SKMEL2, SKMEL23 and SKMEL501) all have undetectable expression (Figure 2a). 

Similarly, the 3 cell lines with dense CpG island methylation in Leprel2 (SBCL2, SKMEL501 and 

PMWK have undetectable (SBCL2 and SKMEL501) or low (PMWK) expression (Figure 2a). To 

further confirm that methylation downregulates expression, we performed demethylation experiments 

with 5’ azacytidine (AZA) and trichostatin A (T). C8161 cells (express Leprel1, Leprel2 but do not 

express P4HA3 mRNA) and SKMEL501 (do not express Leprel or Leprel2 but do express P4HA3) 

were grown with or without 5’azacytidine (AZA) and T. qPCR analysis showed that P4HA3 but not 

Leprel1 and Leprel2 was up-regulated by AZA and AZA+T in C8161 cells, whereas P4HA3 was not 

upregulated in SKMEL501 but both Leprel1 and Leprel2 were up-regulated ((Figure 2b).  

 

C-P3H & C-P4H methylation in primary and metastatic clinical melanoma cases  

 

These results prompted us to analyse methylation in a series of 50 clinical melanoma cases. As control 

tissues we used benign pigmented nevi. Representative pyrograms are shown in Supplementary Figure 

1. Methylation levels for each of the C-P3H and C-P4H genes were uniformly low in benign nevi 

(Supplementary Figure 3). In melanomas, P4HA1 was unmethylated in all cases and P4HA2 mean 

methylation was less than 5%. For both Leprel1 and P4HA3, levels of methylation were significantly 

higher in melanoma than in the benign nevi (p<0.001 for both genes) (Supplementary Figure 3) 

showing that CpG island methylation in Leprel1 and P4HA3 is specific to malignant melanocytes. We 

then analysed Leprel1 and P4HA3 methylation in metastatic melanomas. For Leprel1 the density of 

methylation was similar in nodal metastatic lesions and primary lesions but for P4HA3 methylation was 

higher in some lymph node metastases than in primary cases (p<0.01; Supplementary Figure 3).  

 

 

CP3H and CP4H have opposing effects on melanoma  

 

These results imply that the two major families responsible for post-translational modification of 

collagen have opposing effects on the properties of melanoma cell lines. In initial studies to validate 

this hypothesis, we transfected various melanoma cells with expression plasmids for CP3H and CP4H 

and attempted to select clones stably over-expressing the transfected sequences. Leprel1 and Leprel2 
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were over-expressed in SKMEL501 (methylated Leprel1 and Leprel2) and SKMEL505 cells 

(unmethylated Leprel1 and Leprel2), transfected cells were selected in G418 and colony formation 

determined after 10-14 days. Whereas colony numbers (relative to vector only controls) were 

essentially unaffected by ectopic expression of either gene in SKMEL505, no surviving colonies could 

be recovered from SKMEL501 cells transfected with either gene (Figure 3a). The results are consistent 

with a growth suppressor function for Leprel1 and Leprel2. Next, we tested the effect of over-

expressed P4HA2 and P4HA3. We performed these studies in PMWK cells to determine whether 

changes in C-P4H expression is able to confer a more aggressive phenotype to an early radial growth 

phase melanoma. Cells were transfected with expression plasmids encoding P4HA2 and P4HA3, 

colonies selected and over-expression confirmed using qPCR (Figure 3b). Increased expression of both 

genes was associated with a significant increase in basal proliferation rate in PMWK cells (Figure 3c). 

We then tested whether invasiveness of melanoma cells was affected by ectopic expression of P4HA2 

and P4HA3 and analysis in a 3D spheroid invasiveness assay (Figure 3d). PMWK 3D tumour spheroids 

stably expressing ectopic P4HA2 and P4HA3 clearly had greater invasive activity than control 

spheroids (Figure 3d). We next used inhibitory RNA (RNAi) via lentiviral vectors to selectively target 

gene expression of P4HA2 and P4HA3 in PMWK cells and checked knock-down by qPCR (Figure 4a). 

Knock down of P4HA2 caused a significant reduction in proliferation relative to control cells (Figure 

4b). In the case of P4HA3 knock-down clones were obtained with shRNA1 and proliferation was 

reproducibly lower than control cells, although this did not reach statistical significance (possibly due 

to lower levels of knock down, Figure 4a and Figure 4b). Next, we tested the invasive potential of the 

same PMWK knock down clones (Figure 4c and Figure 4d). Due to limitations in image thresholding 

the inhibitory effect could not be quantified in its entirety. Nonetheless, there was a significant 

reduction in cancer cell invasion (Figure 4d) and representative images clearly show that P4HA2 

knockdown almost completely abolishes invasive leader cells capable of travelling to sites distant of 

the sphere (Figure 4c). Similarly, P4HA3 knockdown was reproducibly associated with reduced 

invasiveness. 

 

C-P4H inhibition has anti-proliferative effects in melanoma via induction of apoptosis  

 

We then test whether pharmacological inhibition of C-P4H affects melanoma cell properties (Vasta and 

Raines, 2018). We tested two compounds, ethyl dihydroxybenzoic acid (EDHB) and the highly specific 

and potent C-P4H inhibitor 2-(5-carboxythiazol-2-yl)pyridine-5-carboxylic acid  (diethyl pythiDC; 
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Vasta et al., 2016). In initial experiments, we titrated the concentration of EDHB testing a range of 

concentrations from 32µM to 512µM in PMWK and SKMEL23 cells (Figure 5a). Concentrations of 

EDHB as low as 128µM have a significant inhibitory effect on proliferation of both cell lines (Figure 

5b). We then compared the potency of EDHB with diethyl pythiDC in proliferation assays (Figure 5c). 

Diethyl pythiDC leads to a significantly greater inhibition at various doses in both cell lines, consistent 

with its greater potency as a pharmacological C-P4H inhibitor (Vasta et al., 2016).  

To determine the mechanism of cell death caused by EDHB treatment, PMWK cells were treated with 

EDHB for 72 hours and analysed using the Annexin V apoptotic assay (Figure 5d). EDHB caused a 

significant increase in the proportion of cells in early stage apoptosis, demonstrating that EDHB 

functions as an inducer of apoptosis in PMWK cells. We sought to determine whether P4HA2, P4HA3 

or both are targeted by EDHB to induce apoptosis. We therefore performed the same apoptotic assay 

on C-P4H knockdown cells (Figure 5d). An increase in apoptosis was seen following EDHB treatment 

with each sample, regardless of knockdown (p<0.0001). However, P4HA2 knockdown cells 

demonstrated significantly fewer cells being induced into early stage apoptosis compared to the LUC 

EDHB treated control, and the same was true of P4HA3 knockdown cells with late stage apoptotic 

cells. Taken together, this data suggests that both P4HA2 and P4HA3 are targeted by EDHB with 

resultant induction of apoptosis in PMWK cells.  

To confirm the finding that P4HA2 knockdown resulted in a significant decrease in invasion, we tested 

the effect of EDHB on invasion in PMWK 3D spheroids. A clear and significant decrease in invasion 

was demonstrated even with low doses of EDHB (Figure 6a and Figure 6b). Again, the limitations in 

image thresholding render the quantified inhibitory effect as lower than representative images suggest, 

although notwithstanding this issue there was a significant inhibition of invasion by EDHB doses as 

low as 64µM (Figure 6a and Figure 6b). 

 

Expression of C-P4H is prognostic in melanoma 

 

Together, these data are consistent with an oncogenic function for the C-P4H family in melanoma and 

we were therefore interested to determine whether expression has prognostic utility in melanoma. We 

interrogated the Jonsson dataset via the R2: Genomics Analysis and Visualization Platform 

(http://r2.amc.nl) (Cirenajwis et al., 2015). Disease-free survival was significantly worse in cases over-

expressing both P4HA2 (p=0.037) and P4HA3 (p=0.0064) (Figure 6c). 
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Discussion 

  

We present evidence that whereas the C-P3H encoding genes, Leprel1 (P3H2) and Leprel2 (P3H3) are 

subject to transcriptional silencing in both melanoma cell lines and clinical cases of melanoma, 

methylation was observed only in P4HA3 among the C-P4H genes. To our knowledge, C-P4H 

(P4HA3) gene silencing has not previously been reported in any human non-haematological cancer, 

and Leprel silencing in solid tumours has only been reported in one previous study (Shah et al., 2009). 

Of note, the majority of melanomas we analysed demonstrated CpG island methylation in at least one 

of Leprel1 and Leprel2 but very rarely were both genes silenced. This suggests that loss of the post-

translational collagen modifying functions of the C-P3H family may be important in malignant 

development in melanoma but also implies that there may be functional redundancy between P3H 

family members to preserve one or more critical functions. We also noted that in melanoma cell lines 

with undetectable or extremely low expression of P4HA3, there was usually moderate to high 

expression of P4HA1 and especially P4HA2 again implying functional redundancy between P4H 

family members.  

There are, however, no mechanistic studies of P4HA3 in human cancer and no previous reports of the 

function of either the C-P3H or C-P4H family in melanoma. Although at face value the methylation 

data imply a tumour suppressor function for P4HA3, our detailed mechanistic studies do not support 

this as clones stably expressing P4HA3 are more invasive and proliferative than parental controls and, 

conversely, knock-down clones are less invasive. Methylation-dependent silencing of genes which 

have potentially oncogenic functions in melanoma may appear counter-intuitive. There are, however, 

precedents in melanoma and indeed in other cancer types. For example, NT5E has definite oncogenic 

properties and yet is subject to methylation-dependent transcriptional silencing in both breast cancer 

and metastatic melanoma with better clinical outcomes in cases with methylation (Lo Nigro et al., 

2012; Wang et al., 2012). 

 

To gain mechanistic insight, we modulated expression of Leprel1, Leprel2, P4HA2 and P4HA3 in 

melanoma cell lines using ectopic expression and (for P4HA2 and P4HA3) knock-down. Ectopic 

expression of Leprel1 and Leprel2 efficiently abrogated proliferation and colony forming ability in cell 

lines in which the endogenous gene is silenced by CpG island methylation. We observed similar effects 
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in breast cancer (Shah et al., 2009). However, clones of the cell line PMWK engineered to stably 

express P4HA2 and P4HA3 (expression confirmed by qPCR) exhibited a higher basal proliferation rate 

and invasiveness than control and parental PMWK cells and this finding was further confirmed by 

knocking down P4HA2 and P4HA3 expression and observing the reverse effect. These observations 

prompted investigation of pharmacological inhibition of the C-P4H proteins using the C-P4H selective 

agents EDHB and the highly potent and selective diethyl pythiDC (Vasta et al., 2016). Both agents 

demonstrated efficient anti-proliferative activity in PMWK and the metastatic melanoma cell line 

SKMEL23 and we have further shown that EDHB induces apoptosis which is at least partially 

dependent on P4HA2 and P4HA3 (knockdown of P4HA2/3 reduced EDHB-induced apoptosis). EDHB 

also has an anti-invasion action, completely inhibiting migratory leader cells from traveling from the 

tumour spheroid.  

Bioinformatic analysis of a well validated set of clinical data demonstrated a clear negative correlation 

between P4HA2 and P4HA3 over-expression and time-dependent clinical outcomes such as disease-

free survival.  

 

We have therefore shown, through mechanistic studies and bioinformatics analysis, that overexpression 

of P4HA2 and P4HA3 is capable of promoting malignant progression in melanoma and that this effect 

is reversible via inhibition of P4HA2 and/or P4HA3. It is likely that this effect is related to the role of 

P4HA2 and P4HA3 in regulating collagen deposition (Xiong et al., 2014). Collagens form the main 

structural component of the extracellular matrix and are known to control cellular processes such as 

proliferation, invasion and migration in both cancer progression and in health (Pozzi et al., 1998, Zhang 

et al., 2013, Provenzano et al., 2008). P4H catalyses the formation of 4-hydroxyproline, which supports 

the folding of newly synthesised collagen polypeptides into stable triple helix structures (Nokelainen et 

al., 2001). Blocking the P4H enzyme prevents the maturation of collagens, and their deposition in the 

extracellular matrix (Sasaki et al., 2012) and it has been shown in breast cancer models that inhibition 

of P4H leads to a reduction in extracellular collagen deposition along with reduced invasiveness (Xiong 

et al., 2014). Therefore, the reduction in phenotypic aggression we observed in melanoma cells when 

P4H is inhibited could be driven by a reduced level of mature collagens with resulting inhibition of 

invasiveness and potentially angiogenesis. Taken together, our results suggest that P4H is a viable 

therapeutic target for reducing growth and invasion in melanoma. 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 10

 

 

 

 

Materials and methods 

 

Cell lines, plasmids and shRNA 

Melanoma cell lines and primary human melanocytes were grown as described previously (Wang et al., 

2012; Lo Nigro et al., 2013). Plasmids encoding Leprel1 and Leprel2 were described previously (Shah 

et al., 2009). To generate a P4HA2 expression vector, the ORF was purchased from Origene and sub-

cloned into pcDNA3-DEST40 using Invitrogen Gateway Technology to generate 

pcDNA3.2/V5/GW/P4HA2. pcDNA3.2/V5/GW/CAT served as the control plasmid. The sequence of 

both plasmids was verified by sequencing. pcDNA3P4HA3 was described previously (Van Den 

Diepstraten et al., 2003). shRNA sequences were obtained from the RNAi Consortium (The RNAi 

Consortium and Moffat et al (2006)). These were inserted into EcoRI and AgeI cut pLKO.1 - TRC 

cloning vector (Addgene #10878) and subsequently these plasmids were used for lentiviral particle 

production and target cell transduction following the Addgene protocol for lentiviral transduction of 

mammalian cells (https://www.addgene.org/tools/protocols/plko/#A). Cell proliferation was measured 

using the sulforhodamine b (SRB) colorimetric assay.  

 

Gene expression analysis 

The expression of CP4H genes was determined by qPCR. cDNA was generated from 1µg RNA using 

Moloney Murine Leukemia Virus reverse transcriptase (M-MLV RT, Sigma), and 0.5µg random 

primer. PCR was performed in 96-well plates using SYBER Select Master Mix, and 0.5µM primer 

pairs targeting each mRNA transcript of interest (Thermofisher). 50ng cDNA was added to each well, 

containing 10µl SYBER Select, 3µl nuclease free water and the primer pairs. mRNA levels were 

determined by normalising to the housekeeping gene hypoxanthine-guanine phosphoribosyltransferase 

(HPRT) and using the relative quantification method (2-∆∆Ct). Data are presented as fold-change 

compared to housekeeping gene. 

 

Annexin V Assay 
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200,000 cells were plated in 6-well plates and allowed to attach overnight. The following day, cells 

were treated with appropriate drug or vehicle control. On day 3, wells were harvested via trypsinization 

and stained using the Annexin V Apoptosis Detection kit, according to manufactures direction 

(ThermoFisher). Cells were analysed on a Muse Cell Analyser.  

 

Spheroid 3D Invasion Assay 

Invasion was measured by generating 3D tumour spheroids and measuring their invasion into 

surrounding growth factor reduced matrigel (Corning). 5000 cells per well were plated in a low 

attachment 96-well plate with 200µl media. Following 4 days growth, cells were visually analysed to 

confirm spheroid formation.  

 

Colony forming assays  

2x105 cells / 6cm dish and transfected after 24h with varying amounts of expression plasmids for 

Leprel1, Leprel2, P4HA2 and P4HA3 or control vector using Metafectine (Biontex) according to the 

manufacturer’s instructions. 48 hours after transfection G418 (400 ng/ml) was added and cells were 

monitored daily by light microscopy for the appearance of colonies which were counted by staining 

with Coomassie Brilliant Blue. Cell clusters of 50 cells were defined as colonies.  

 

Clinical material 

The study was approved by The Tayside Tissue Bank, under delegated authority from the Tayside 

Local Research Ethics Committee, with written informed consent from patients. We analysed 50 

clinical cases of melanoma including primary and metastatic lesions. In all cases, micro-dissection of 

tissue sections was performed to enrich for melanoma cells prior to isolation of nucleic acids. Benign 

pigmented nevi from sun-exposed skin were control tissues. We used proteinase K digestion to isolate 

genomic DNA from tissue sections.  

 

Methylation analysis 

Methylation in the CpG islands of the C-P3H and C-P4H gene families was determined using 

pyrosequencing with the primers and reaction conditions described previously (Hatzimichael et al., 

2012).  

 

Statistics 
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Statistical analyses were performed using Prism 7 (GraphPad software, Inc., La Jolla, CA, USA). 

Significance was taken as follows: *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. Kaplan Meier 

plots by gene expression were created on the R2: Genomics Analysis and Visualization Platform 

(http://r2.amc.nl) using the “Tumor Melanoma - Jönsson - 214 - custom - ilmnht12v4” dataset (n=214) 

(Cirenajwis et al., 2015). The expression cut-off was determined using the Kaplan scan modus, which 

generates a Kaplan Meier Plot based on the most optimal mRNA cut-off expression level to 

discriminate between a good and bad prognosis cohort.  
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Figure Legends 

 

Figure 1 

  

Expression of C-P3H and C-P4H genes in melanoma cell lines. qPCR analysis of each C-P3H and 

C-P4H genes in the melanoma cell line panel. cDNA was prepared and qPCR performed as described 

in Methods. Expression is shown as 2^-DDCt calculated as described in Methods. Data shown are 

means +/- 1SD. Each experiment was performed in triplicate and repeated at least twice. 

 

Figure 2 

 

C-P3H and C-P4H are epigenetically regulated in melanoma. A: Scatter plot showing that 

methylation in the P4HA3, Leprel1 and Leprel2 CpG islands is negatively correlated with expression. 

Data show mean ± SEM (n=15). Correlation analysis was done using Pearson’s correlation coefficient 

B: Demethylation reactivates expression of P4HA3 in melanoma cells with CpG island methylation. 

C8161 and SKMEL501 cells were grown in the presence of azacytidine (A), trichostatin A (T) or both 

agents (A&T). Expression was determined by qPCR. Data shown are means (+/- 1 SD) relative to 

control cells (C).  

 

Figure 3 
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CP3H and CP4H have opposing effects on melanoma progression. A: Ectopic expression of 

Leprel1 and Leprel2 in cells lacking endogenous expression blocks proliferation. B: qPCR analysis in 

PMWK engineered to express of P4HA2 and P4HA3. Data shows mean ± SEM (n=3). Significance 

was tested using one-way ANOVA with Dunnett’s post hoc testing. C: P4HA2 and P4HA3 

overexpression significantly increase proliferation in PMWK cells. Graphs shows OD490 6 days post 

treatment. Data shows mean ± SEM over biological repeats (n=2) performed in triplicate. Significance 

was tested using two-way ANOVA with Tukey’s post hoc testing. D: P4HA2 and P4HA3 

overexpression increase the invasiveness relative to control (CTRL) of PMWK early RGP melanoma 

cells. Images are representative of two independent experiments performed in triplicate.  

 

Figure 4 

 

Inhibition of CP4H gene expression reduces melanoma proliferation and invasiveness. A: qPCR 

analysis of P4HA2 and P4HA3 in PMWK cells expressing shRNA.  Data are mean 2^-DDCt ± SEM 

(n=3). Significance: one-way ANOVA with Dunnett’s post hoc testing. B: P4HA2 and P4HA3 

knockdown reduce proliferation of PMWK cells. Quantification was performed using SRB as 

described in Methods. Data shows mean ± SEM over biological repeats (n=2) performed in triplicate. 

Significance shows the difference to appropriate control, using one-way ANOVA with Sidak’s post hoc 

testing. C: C-P4H knockdown reduces invasiveness of PMWK cells. Representative images are shown. 

Spheroids were imaged at 2X. D: Reduced invasion of PMWK 3D spheroids. Data shows mean ± SEM 

(n=2), in triplicate. Significance: two-way ANOVA with Tukeys post hoc testing.  

 

Figure 5  

 

Inhibition of CP4H has anti-proliferative effects on melanoma cells via induction of apoptosis. A 

and B: Inhibition of proliferation of PMWK (blue) and SKMEL23 (green) by EDHB. Data shown are 

mean ± SEM over biological repeats (n=3) performed in 6 replicates. Significance: two-way ANOVA 

with Tukeys post hoc testing. C: Anti-proliferative effect of EDBH and diethyl pythiDC on PMWK and 

SKMEL23. Data are mean ± SEM (n=2) in triplicate. Significance: one-way ANOVA with Sidak’s 

post hoc testing. D: EDHB induces apoptosis in PMWK cells. Apoptosis was measured via Annexin V 

staining on day 3. Data shows mean ± SEM (n=3). Live cell population not shown. Significance: two-
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way ANOVA with Tukeys post hoc testing. * differences in early stage apoptosis. • differences in late 

stage apoptosis.  

 

Figure 6 

Blocking CP4H inhibits melanoma invasion. A: EDHB inhibits invasiveness of PMWK 3D tumour 

spheroids. Representative images from two independent experiments performed in triplicate. Spheroids 

were imaged at 2X on days 0, 3 and 6 post treatment. B: Quantification of the effect of EDHB on 

PMWK 3D spheroid invasion. Spheroids were imaged at 2X on days 0, 3 and 6 post treatment. Data 

shows mean ± SEM (n=2) performed in triplicate. Significance was compared to the appropriate 

control using two-way ANOVA with Tukeys post hoc testing.  C: Over-expression of C-P4H genes is 

associated with worse disease-free survival in melanoma. Kaplan Meier plots by gene expression were 

created using the “Tumor Melanoma - Jönsson - 214 - custom - ilmnht12v4” dataset (n=214) 

(Cirenajwis et al., 2015).  
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