608 research outputs found

    Optimization of the Superconducting Linear Magnetic Bearing of a Maglev Vehicle

    Full text link
    Considering the need for cost/performance prediction and optimization of superconducting maglev vehicles, we develop and validate here a 3D finite element model to simulate superconducting linear magnetic bearings. Then we reduce the 3D model to a 2D model in order to decrease the computing time. This allows us to perform in a reasonable time a stochastic optimization considering the superconductor properties and the vehicle operation. We look for the permanent magnet guideway geometry that minimizes the cost and maximizes the lateral force during a displacement sequence, with a constraint on the minimum levitation force. The displacement sequence reproduces a regular maglev vehicle operation with both vertical and lateral movements. For the sake of comparison, our reference is the SupraTrans prototype bearing. The results of the optimization suggest that the bearing cost could be substantially reduced, while keeping the same performances as the initial design. Alternatively, the performances could be significantly improved for the same original cost

    Thermal Equilibrium as an Initial State for Quantum Computation by NMR

    Full text link
    We present a method of using a nuclear magnetic resonance computer to solve the Deutsch-Jozsa problem in which: (1) the number of molecules in the NMR sample is irrelevant to the number of qubits available to an NMR quantum computer, and (2) the initial state is chosen to be the state of thermal equilibrium, thereby avoiding the preparation of pseudopure states and the resulting exponential loss of signal as the number of qubits increases. The algorithm is described along with its experimental implementation using four active qubits. As expected, measured spectra demonstrate a clear distinction between constant and balanced functions.Comment: including 4 figure

    Fast, Interactive Worst-Case Execution Time Analysis With Back-Annotation

    Get PDF
    Abstract—For hard real-time systems, static code analysis is needed to derive a safe bound on the worst-case execution time (WCET). Virtually all prior work has focused on the accuracy of WCET analysis without regard to the speed of analysis. The resulting algorithms are often too slow to be integrated into the development cycle, requiring WCET analysis to be postponed until a final verification phase. In this paper we propose interactive WCET analysis as a new method to provide near-instantaneous WCET feedback to the developer during software programming. We show that interactive WCET analysis is feasible using tree-based WCET calculation. The feedback is realized with a plugin for the Java editor jEdit, where the WCET values are back-annotated to the Java source at the statement level. Comparison of this treebased approach with the implicit path enumeration technique (IPET) shows that tree-based analysis scales better with respect to program size and gives similar WCET values. Index Terms—Real time systems, performance analysis, software performance, software reliability, software algorithms, safety I

    Thrombospondin 1 precedes and predicts the development of tubulointerstitial fibrosis in glomerular disease in the rat

    Get PDF
    Thrombospondin 1 precedes and predicts the development of tubulointerstitial fibrosis in glomerular disease in the rat. Tubulointerstitial fibrosis is one of the most important histologic features that predicts progression in kidney disease. Thrombospondin 1 is an extracellular matrix protein that can activate latent TGF-β, a cytokine implicated in the pathogenesis of tubulointerstitial fibrosis. We examined the expression of thrombospondin 1 in several animal models of glomerulonephritis (anti-Thy1 model, aminonucleoside nephrosis, passive Heymann nephritis) that are associated with tubulointerstitial disease. Thrombospondin 1 mRNA and protein were transiently increased in tubular cells, myofibroblasts and some macrophages in areas of tubulointerstitial injury. Thrombospondin 1 expression always preceded the development of tubulointerstitial fibrosis, and correlated quantitatively and spatially with the later development of interstitial fibrosis. Thrombospondin 1 expression predicted the severity of tubulointerstitial fibrosis better than the degree of macrophage or myofibroblast accumulation. Thrombospondin 1 expression was associated with increased expression and activation of TGF-β1 and decreased expression of LAP-TGF-β in areas of tubulointerstitial injury. We conclude that thrombospondin 1 is an early marker predicting the development of tubulointerstitial kidney disease. De novo expression of thrombospondin 1 is associated and colocalized with increased expression of TGF-β1 and decreased expression of LAP-TGF-β during the development of tubulointerstitial disease in vivo. These data are consistent with the possibility that thrombospondin 1 may be an endogenous activator of TGF-β

    Differential regulation of interleukin-6 expression in human fibroblasts by tumor necrosis factor-α and lymphotoxin

    Get PDF
    AbstractThe treatment of human diploid fibroblasts with tumor necrosis factor (TNP)-α and with lymphotoxin (LT) is associated with induction of interleuk-in-6 (IL-6) transcripts with TNF-α being 10-fold more potent than LT. Here we report on the TNF-α/LT-induced signaling mechanisms responsible for the regulation of IL-6 gene expression in these cells. Run-on assays demonstrated that both TNF-α and LT increase IL-6 mRNA levels by transcriptional activation of this gene. Stability studies of IL-6 transcripts in fibroblasts showed that TNF-α delayed IL-6 mRNA decay but not LT. The induction of IL-6 transcripts by TNF-α and LT was not inhibited by the isoquinoline sulfonamide derivative H7. Similarly, depletion of protein kinase C (PKC) by 12-O-tetradecanoyl-phorbol 13-acetate (TPA) did not change the ability of TNF-α and LT to induce IL-6 transcripts, demonstrating that stimulation by these agents may not be mediated by activation of PKC. Stimulation of IL-6 transcripts in fibroblasts did also not require new protein synthesis as exposure to the protein synthesis inhibitor cycloheximide (CHX) enhanced accumulation of IL-6 mRNA in the presence or absence of TNF-α or LT

    Evaluating Heuristics for Planning Effective and Efficient Inspections

    Get PDF
    A significant body of knowledge concerning software inspection practice indicates that the value of inspections varies widely both within and across organizations. Inspection effectiveness and efficiency can be measured in numerous ways, and may be affected by a variety of factors such as Inspection planning, the type of software, the developing organization, and many others. In the early 1990's, NASA formulated heuristics for inspection planning based on best practices and early NASA inspection data. Over the intervening years, the body of data from NASA inspections has grown. This paper describes a multi-faceted exploratory analysis performed on this data to elicit lessons learned in general about conducting inspections and to recommend improvements to the existing heuristics. The contributions of our results include support for modifying some of the original inspection heuristics (e.g. Increasing the recommended page rate), evidence that Inspection planners must choose between efficiency and effectiveness, as a good tradeoff between them may not exist, and Identification of small subsets of inspections for which new inspection heuristics are needed. Most Importantly, this work illustrates the value of collecting rich data on software Inspections, and using it to gain insight into, and Improve, inspection practice

    The Investigation of Structure Heterogeneous Joint Welds in Pipelines

    Get PDF
    Welding joints of dissimilar steels don’t withstand design life. One of the important causes of premature destructions can be the acceleration of steel structural degradation due to cyclic mechanical and thermal gradients. Two zones of tube from steel 12H18N9T, exhibiting the structural instability at early stages of the decomposition of a supersaturated solid austenite solution, were subjected to investigation. Methods of x-ray spectral and structure analysis, micro hardnessmetry were applied for the research. Made the following conclusions, inside and outside tube wall surfaces of hazardous zones in welding joint have different technological and resource characteristics. The microhardness very sensitive to changes of metal structure and can be regarded as integral characteristic of strength and ductility. The welding processes are responsible for the further fibering of tube wall structure, they impact to the characteristics of hot-resistance and long-term strength due to development of ring cracks in the welding joint of pipeline. The monitoring of microhardness and structural phase conversions can be used for control by changes of mechanical properties in result of post welding and reductive heat treatment of welding joints
    corecore