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Abstract - A significant body of knowledge 
concerning software inspection practice indicates 
that the value of inspections varies widely both 
within and across organizations. Inspection 
effectiveness and efficiency can be measured in 
numerous ways, and may be affected by a variety 
of factors such as Inspection planning, the type of 
software, the developing organization, and many 
others. In the early 1990's, NASA formulated 
heuristics for inspection planning based on best 
practices and early NASA inspection data. Over the 
intervening years, the body of data from NASA 
inspections has grown. This paper describes a 
multi-faceted exploratory analysis performed on this 

· data to elicit lessons learned in general about 
conducting inspections and to recommend 
improvements to the existing heuristics. The 
contributions of our results include support for 
modifying some of the original inspection heuristics 
(e.g. Increasing the recommended page rate), 
evidence that Inspection planners must choose 
between efficiency and effectiveness, as a good 
tradeoff between them may not exist, and 
Identification of small subsets of inspections for 
which new inspection heuristics are needed. Most 
Importantly, this work illustrates the value of 
collecting rich data on software Inspections, and 
using it to gain insight into, and Improve, inspection 
practice. 

Index Terms - D.2.5 a Code inspections and 
walkthroughs, D.2.8 Metrics/Measurement. D.2.8.c 
Process metrics, 0.2.9.k Project control & modeling 

• 
1 INTRODUCTION 

A long history of experience and experimentation 
has produced a significant body of knowledge con­
cerning the proven effectiveness of software inspec­
tions. Data and experience from many years and 
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many types of organizations have shown that a 
properly conducted inspection can remove between 
60% and 90% of the existing defects [1 ). It is well 
established that inspections in the earliest phases of 
software development yield the most savings by . 
avoiding downstream rework. 

However, the value of inspections varies widely 
both within and across organizations. Inspection 
effectiveness and efficiency can be measured in nu­
merous ways (defects found, defects slipped to test­
ing, time spent, defects found per unit of effort, etc.), 
and may be affected by a · variety of factors, some 
related to inspection p lanning (e.g. number of in­
spectors) and others related to the software and the 
developing organization (e.g. application domain). 
The work described here is based on an analysis of a 
large body of data collected from inspections at 
NASA, the US governmental space agency. NASA 
heuristics for inspection planning were formulated 
in the early 1990's based on best practices and data 
from early NASA inspections. Over the intervening 
years, the body of data from NASA inspections has 
grown, and recently the authors of this paper were 
given the opportunity to analyze it to gain new in­
sights into inspection effectiveness and efficiency. 

The original set of h~uristics for planning inspec­
tions was formulated by Dr. John Kelly at NASA's 
Jet Propulsion Laboratory (JPL), based on metrics 
collected across hundreds of . inspections [2] .. The 
heuristics focused on parameters known as the 
moderator's three control metrics, that is, the three 
parameters over which the inspection planner has 
direct influence. Modifying the values of these pa­
rameters is the mechanism by which an inspection 
moderator can affect the outcome of a given inspec­
tion. Kelly's research examined data from many in­
spections at NASA to formulate optimal ranges for 
these values and to help guide inspection planners. 
These values were incorporated into the JPL robust 
formal inspection training, which has been widely 
disseminated across all the NASA Centers. 

The specific heuristics resulting from Kelly's re- . 
search are: 
• Team size, the number of participants involved 

in the inspection, should be between four and 
six people, regardless of the type of document 
being inspected. These values ·reflect the fact 
that teams of less than four people are likely to 
lack important perspectives, while larger teams 
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are more likely to experience dynamics. that 
limit full participation. 

• Meeting length should be less than two hours, 
regardless of the type of document being in­
spected. If meetings stretch on longer than two 
hours, members' energy is likely to flag and the 
results are likely to be less than optimal. It is 
recommended that meetings end after two 
hours and then additional meetings should be 
scheduled if warranted. 

• Page rate, the number of document pages that 
the inspectors examine per hour of the meeting, 
will depend on the type of document. Inspec­
tions of requirements documents should exam­
ine less than 15 pages per hour; design and test 
documents less than 20 pages per hour; and 
code documents less than ten pages per hour. 
These recommendations reflect the fact that giv­
ing a team too much material to look through 
will invariably result in a more superficial in­
spection. 

Many things about software development have 
changed since that time. Languages, design nota­
tions, even the scale and type of problems tackled 
on NASA projects are very different from what they 
would have been in the early 1990s. Inspections 
themselves remain an important part of develop­
ment processes at NASA. For example, software 
inspections are included in the mandatory NASA 
Procedural Requirements for Software Engineering 
(NPR 7150.2), issued by the Office of the Chief En­
gineer [3]. As a result, one focus of our work has 
been to examine whether the recommended ranges 
of parameters still apply to contemporary NASA 
projects. 

Our first step in analyzing the inspection data 
was to attempt to val idate the NASA inspection 
planning heuristics. This analysis and its results are 
described in more detail in section 2, but the overall 
finding confirms that the heuristics continue to be 
generally effective in most circumstances (i.e. on 
average, inspections that comply with the heuristics . 
result in more defects found than those inspections 
that did not comply), but there was evidence that 
they could be improved upon. In particular, we 
found four potential weaknesses: 
1. The heuristics only apply to maximizing the 

total number of defects found (i.e. effective­
ness), and don't address other potential out­
comes of interest (e.g. effort spent), in particular 
related to efficiency; 

2. The heuristics represent a one-size-fits-all ap­
proach to inspection planning, with no refine­
ment for different project situations; 

3. The heuristics are not as universally applicable 
as one would hope, i.e. some modification could 
yield a stronger relationship between compli­
ance and inspection effectiveness and/ or effi-
ciency; · 

4. Compliance with the heuristics seemed to be 

decreasing, i.e. the heuristics may be out of date 
in relation to what is realistic in the contempo­
rary NASA development environment. 

Based on these initial findings, we conducted a 
series of exploratory analyses to better understand 
the effect of inspection planning parameters on in­
spection effectiveness and efficiency, and to ulti­
mately refine and improve the inspection planning 
heuristics. In particular, our analysis is guided by 
the following research questions: 
Ql. What effect do inspection parameters have on 

other inspection outcomes, besides total number 
of defects found? 

Q2. Are there variations in the heuristics that are 
appropriate for different situations? 

Q3. Are there variations in the heuristics that would 
better ensure that compliance would result in 
better inspection outcomes (i.e. that would im­
prove the relationship between compliance and 
effectiveness/ efficiency)? 

We begin, in section 2, by describing the initial 
analysis showing the effectiveness of the original 
heuristics. We then describe the data that our analy­
sis is based on and our methodology in terms of the 
various exploratory data analyses we performed in 
order to gain understanding of the relationships 
between variables (in section 3) and the results of 
those analyses (in section 4). A discussion of these 
results is presented in section 5, fol(owed by a dis­
cussion of related literature that addresses the fac­
tors influencing inspection effectiveness and effi­
ciency in section 6. We summarize our. conclusions 
in section 7. 

2 BACKGROUND - INSPECTIONS AT NASA 
We obtained a large set of data from a vari~ty of 
software inspections across NASA. It includes 2,528 
inspections of requirements, design, code, test plans, 
and a small number of other unspecified artifacts. 
These inspections come from 81 projects across five 
NASA Centers. These data were self-reported by 
developers as part of th_e inspection process and 
were not reported to management, so we have some 
confidence that they accurately represent inspection 
practice and were not manipulated for any purpose. 

We describe here our initial analyses, which mo­
tivated the investigation described in the rest of the 
paper. We first divided the data into two sets: an 
"historical" dataset that covered the period of the 
early 1990s when the original heuristics were formu­
lated, and a "contemporary" datase~ that covered 
the time period since then (up until 2006). As the 
dividing line, we used January 1, 1995. This was a 
rather ~rbitrary choice but had the advantage of 
dividing the entire set into two roughly equal parts 
(1041 contemporary inspections and 1487 historical 
ones). It should be noted that the relative sparseness 
of the contemporary set (1041 inspections over 11 
years, as compared to 1487 inspections over 6 years) 
is an artifact of the data collection process (i.e. our 
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dataset cannot be considered to be exhaustive), and 
is not evidence that the prevalence of inspections at 
NASA has decreased. 

For each inspection in the dataset, we determined 
if it conformed to the recommended values of each 
inspection heuristic. For each heuristic, we compared 
the mean number of defects reported for inspections 
that complied with that heuristic (in-compliance in­
spections) to the mean for inspections that did not 
(out-of-compliance inspections). Since none of our 
variables were normally distributed, we used a non­
parametric statistic, the Mann-Whitney test, to iden­
tify significant differences in the means. We summa­
rize these results in Table 1, dividing them accord­
ing to the dataset (contemporary vs. historical), and 
observe whether the heuristics might have become 

)more or less effective over time For each dataset, we 
report how many inspections actually provided the 
data required for this analysis and the average 
number of defects found by inspections meeting 
that criteria. 

Table 1 highlights several observations about the 
dataset. In the contemporary data, it is much less 
likely that teams followed the suggested heuristics 
for inspection team size and page rate. For example, 
out of 229 projects providing "team size" data, only 
23 (lO'X,) fell into the suggested range; and only 
about 15% of the projects reporting "page rate" data 
conformed to the heuristics. In contrast, for the his­
torical dataset, regarding the " team size" data, the 
number of inspections that followed the heuristics 
and those that did not is much closer to 50/50; 
namely, 253 were in the recommended range and 

239 were not. 
Our results show that projects that followed the 

heuristics for team size detected more defects on 
· average for both contemporary and historical 

datasets. In fact, the difference is actually more pro­
nounced in the contemporary data. From the statis­
tical nnalysis, the p-values shown in the rightmost 
column are much less than our chosen alpha-level of · 
0.05. This means that there is less than a 5% chance 
that the perceived difference is actually due to 
chance, rather than a real effect of the parameter. 

.We nlso observe that the meeting length heuristic 
has an effect counter to expectations. That is, in both 
the contemporary and historical datasets, inspec­
tions that conformed to the meeting length heuristic 
found fewer defects than those that exceeded the 
heuristic. This result is curious, but is probably af­
fected at least in part by the fact that relatively very 
few inspections did not conform to this heuristic. 

The results pertaining to the page rate heuristic 
are also worthy of note. They indicate that the page 
rate heuristic is not only less effective, but also more 
difficult to comply with, in the contemporary 
dataset than historically. Historically, about 24% of 
the inspections were able to ~.omply with the page 
rate heuristic (as compared to 15% of the contempo­
rary inspections), and those inspections found sig­
nificantly more defects. The contemporary inspec­
tions that conformed to the page rate heuristic 
found marginally more defects (4.4 vs. 4.1), but the 
difference is not significant. This finding points to 
the need to update this heuristic. 

Table t . Testing original heuristics on historical and contemporary data. 

In-compliance 
· tions 

Inspec-

# of inspec­
tions 

Avg.# of 
resulting 
defects 

Out-of-compliance In­
spections 

# of inspec- Avg. # of 
tions resulting 

defects 
··· .. : CONTEMPORARY DATASET (1995 and later) ·.: .. :~:,. ;°:,.·: ,. '· 

Team size 23 38.7 206 6.5 

Meeting length 184 3.7 

Page rate . : ·~:~ ·;. :·.· 
~... . . 

.•. 23 .. ,; . 
, .. I • -

.. HISTORICAL DATASET (1994 ·and earlier) : 
Team size 253 11.7 

Meeting length 460 8.5 

Page rate ·_,.115 ... \. ,, 15.6 
.. ... •• •• # ..... • •• • , . ••• 

if 

... . 

7 

:.' 134 ' ·:. · 
. : ' . . ~ ' ~ 

27.6 

· ,, 4.1'-:: • 
\: :_::, .~~;.;:.:?: 

. ·. : . ~ ...... : ·';;·· 
239 

29 

_··. 35~ · 

7.3 

22.7 

;. 7.4' ., 
,· 

Inspections 
following 
heuristics 

significantly 
better? 

YES 
(p<0.0005) 

NO 

NO 
(o=0.5) 

YES 
(p<0.0001) 

NO 

YES 
(p<0.0001) 

3 
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Table 2. Variables used in the analysis . 

. Irideoendeht'.Variaoles-i..(j ~~·~'}.rr-fi",;ir.,'·~.:~~:V!.:;8.·~:>~~~:,~~.t~.hi~Ji$~.j.:.:~;:.:~~.~:1.t,t{~'.:f,tft~r.:':~ 
Team size Number of people attending the inspection meeting and / or serv-

ing as inspectors 
Meeting: Jen2th Length of inspection meetin2, in hours 
Page rate Number of document pages inspected, divided by the meeting 

length 
· Deoendent Vai'iabfes ~1..,;<,, c~·.(~."''!.;,~ :f..'1Y.}.'r,!·•~Mif!' \~· +':"!~-.~ 1:-:~,"0.r"O.:,~·;::'~;.:~~.i:>;1~~~~~~,:¥.~~~-; 
Number of defects found Total number of defects reported as an outcome of the inspection 
Total effort Total effort, in person-hours, includi ng meeting effort and prepa-

ration effort, but not including: rework 
Defects per page Number of defects found divided by the number of document 

pages inspected 
Defects per hour Number of defects found divided bv total effort in person-hours 

:,Jrltetverurii?-:Vanables:~:;~O-~~~f:":-.~~~~.;:.{,~t~?;·~ti.~-!M~.<f~.;_;~~;-:;:;w;~~~-->~;;'.~"'~1m 
Application domain Attitude, Orbit, Flight software 
Software tvpe NASA-defined software type codes (A to H, or unspecified) 
Project size Small or medium 
Product tvpe Requirements, desi2n, code, test documents 
Center NASA Center at which the insoection took olace 

As mentioned in the introduction, the analysis pre­
sented in the rest of this paper is motivated by our obser­
vations from the analysis presented above. In particular, 
it is clear that the inspection planning heuristics could be 
more uniformly effective for all inspection parameters. In 
addition, from Table 1, we can see that contemporary 
inspections were less likely to comply with the heuristics 
than older (historical) inspections. This may indicate that, 
due to changes in the development environment, the 
heuristics are becoming harder to apply, and projects are 
more often violating them. 

3 METHODOLOGY 

The methodology for our work was exploratory. 
We started with the research questions above, probed 
the data in various ways, and allowed the results of 
each analysis to guide the types of analysis to come 
next. We used both visual and statistical methods to 
gain insight into relationships between variables that 
might be interesting and/ or to confirm or determine 
the strength of relationships we suspected might exist. 
Thus, we did not have a pre-defined sequence of steps 
that we followed for data analysis. Instead, in this sec­
tion, we present the details of the dataset we used, in­
cluding all the variables we investigated, and an over­
view of the variety of analysis techniques we em­
ployed throughout the paper. The sequences of analy­
ses used are detailed in section 4, along with their find­
ings. 

3.1 Variables 
The dataset we obtained has numerous fields, which 
we have designated for our purposes as independent, 
dependent, or intervening variables. These variables 
are listed in Table 2 and are described in the subsec­
tions below. 

3. 1. 1 Independent variables 
The independent variables for our analyses consist of 
the three inspection control metrics, i.e. team size 
(number of participants), meeting length, and page 
rate. 

The meeting length is reported in hours. An anom­
aly that we noticed during inspection of the data in 
preparation for analysis (but after the analysis pre­
sented in section 2) was that a number of records re­
ported very large meeting lengths, as high as 80 hours. 
In conversations with some of our contacts from whom 
our data were donated, we learned that some of these 
very long meetings were actually inspections that 
spanned multiple meetings, but for reporting pur­
poses, the meeting lengths were summed. Since the 
meeting length heuristic is concerned with the length 
of contiguous time,that the inspection team meets, us­
ing the summed meeting length data did not make 
sense. For our analyses, we ignored inspections for 
which the reported meeting length was greater than 4 
hours. We chose 4 hours as a reasonable limit on the 
length that a single contiguous meeting was likely to 
last. Also, it constituted a logical break in· the data 
where only 194 records (-8% of the total data set) were 
eliminated. 

Page rate was a derived measure that normally did 
not appear in the raw data we received from Centers. 
Since some inspections reported the size of the in­
spected artifact in lines of code (LOC), and others in 
pages, we used a scaling factor of 30 LOC per page to 
convert between the two (this is the standard conver­
sion factor used in planning inspections at NASA [21). 
We then used the page measure (raw or derived) to 
calculate the page rate by dividing it by the meeting 
length. 
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3.1.2 Dependent variables 
The dependent variables for our study corresponded to 
the inspection outcomes, i.e. those nttributes that de­
scribe how· successful the inspection was. Nearly all the 
inspections in our dataset reported the total number of 
defects found, which we designated as one of our de­
pendent variables. However, in order to get n clearer 
picture of our annlysis results, we also looked at various 
normalized outcome variables. In particular, we normal­
ized the defect count for each inspection by number of 
pages inspected ("defects per page") and by total in­
spection effort ("defects per hour''). We also used total 
inspection effort in person-hours as a dep~ndent vnri-
able. · 

3. 1.3 Intervening variables 
There is a very lnrge number of attributes of inspec­
tions that could potentially nffect the inspection out­
come. Many, but not all, of these were represented in 
our dataset. There were several important attributes 
for which there was enough variety in the data that we 
could trent them as intervening variables in the analy­
sis. For each of these variables, we partitioned the data 
into subsets bnsed on the attribute values. 

For application domain, we identified subsets of the 
inspection data that included inspections of nrtifacts 
from projects in· the same domain. The domains for 
which we hnd sufficient data for analysis were atti­
tude, orbit, and flight software. These domains are 
sub-domains of satellite control software, which is the 
larger domain in which NASA is working. Another 
way to categorize'domain is through the NASA set of 
softwnre type "codes", designated A through H. For 
example, type A software is software that controls 
spncecraft carrying humans. In our dataset, the only 
substantial subset based on these categories was type 
C software, which is software that supports non-life­
cri tical aspects of a mission, e.g. processing of scientific 
data from instruments. Inspection records outside this 
subset were either of software of another category, or 
for which no category was reported. Finally, project 
size was determined by creating categories of projects 
based on totnl size in LOC (small, medium, etc.) based 
on the distribution of project size in the dntaset (small 
was defined as 10-lOOKLOC, etc.). The only subsets of 
sufficient size for analysis were small projects and me­
dium projects. 

In addition to these intervening variables, s ubsets of 
the inspection dnta were nlso defined based on the 
work artifact being inspected (e.g. requirements, de­
sign documents, code, test documents) and on the 
NASA Center in which the project was performed. The 
NASA Center variable is important because it is a 
proxy for cultural and historical differences between 
Centers, as well as differences in inspection processes. 
While all Centers must adhere to a general agency­
wide inspection process, there is considerable leeway 
in the details for Centers to tailor the process. These 
two intervening variables were available for nll inspec­
tions in the dataset. 

if .. -· 

Not all of the inspections in the dataset had re­
corded values for all of the varinbles outlined above. 
Hence, we conducted our analyses separately to use 
the mnximum possible amount of data in each annly­
sis. For this reason, the number of data points reported 
in section 4 varies from one nnalysis to another. 

3.2 Data analyses 
As explained earlier, our analysis was exploratory in 
nature, so we did not follow a defined sequence of 
steps. In section 4, as we present results we will also 
report the tests and techniques that were used to gen­
erate each finding. In this section, we provide an over­
view of how the different tests were performed. 

Comparison of means tests: Some of our analyses 
were similar to the analysis that motivated this inves­
tigation, described in section 2. For each inspection 
heuristic, we divided the data into an in-compliance 
set and an out-of-compliance set. We then performed a 
Mann-Whitney test to see if the outcomes of the two 
sets of inspections were significantly different. To ad­
dress Ql, we expanded the set of outcome variables 
used, to include total effort expended, defects per page 
and defects per hour, in addition to the number of de­
fects found (as in section 2). We were also interested in 
fine-tuning the inspection heuristics for particular con­
texts (Q2).For this purpose we performed similar 
analyses, except with subsets of the data, partitioned 
by values of various intervening variables. For some of 
the subsets and heuristics, the divisions between in­
compliance and out-of-compliance inspections were 
too unbalnnced to do a meaningful comparison, i.e. 
either nearly all inspections in the subset were in com­
pliance, or nearly all were out of compliance. These 
cases had to be ignored during this analysis, but they 
were noted as examples of situations where the heuris­
tics were either very easy or very difficult to comply 
with. We also used the Mann-Whitney test to check for 
significnnt differences between subsets of the data 
based on values of dependent variables (e.g. to charac­
terize highly effective inspections) in an effort to iden­
tify better thresholds for the heuristics. 

Visualizations: In order to determine i.£ there were any 
obvious "natural" thresholds in the data that might 
serve as improved thresholds for the inspection heuris­
tics (e.g. the most effective range for number of par­
ticipants), we used scatter plots. The scatter plots were 
examined to see if, in any cases, it was visually possi­
ble to identify any ranges of independent variables 
associated with optimal vnlues of the dependent vnri­
ables. 

Another visualization we found useful were box­
plots, which show, within a given subset of the datn, · 
the distribution (including the mean, median, quarti­
les, and outliers) of a particulnr variable. We used box­
plots to investigate possible relationships between 
variables. To do this, we segmented the dnta into sub­
sets based on one vnriable, then generated boxplots 
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using another variable in each subset. A side by side 
comparison· of these boxplots was used to intuit how 
different the distributions were, and thus the possibil­
ity of a relationship between the two variables. 

Regression trees: Regression trees are one approach to 
modeling the relationship between inspection parame­
ters and outcomes. Regression tree modeling applies 
an iterative partitioning algorithm to a set of data, re­
sulting in a tree-like s tructure, where each node repre­
serits a subset of the data conforming to a conjunction 
of conditions based on the independent variables in 
the set. The conditions are chosen such that each re­
sulting subset is as homogeneous as possible with re­
spect to a chosen dependent variable. The "quality" of 
a regression tree (i.e. how useful it is in characterizing 
a dataset) is normnlly assessed through two metrics. 
The first is the correlation coefficient between the ac­
tual values of the dependent variable and the values 
predicted by the tree. The second is the relative error, 
which indicates how much of the dntaset is co·rrectly 
predicted using the tree. Regression trees give insight 
into those independent and intervening variables most 
likely to have an effect on the value of the dependent 
variable, nnd which combinations of the variables nre 
likely to be significnnt within different subsets of the 
data. We used regression tress primarily as an investi­
gative tool to help us narrow down our large set of 
independent variables and focus on those most likely 
to be significant. 

Tests of correlation: We calculated correlations for all 
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combinations of independent and dependent variables 
in Table 2, for the whole dataset and for all subsets 
(based on values of intervening variables) large 
enough to support the analysis. Because of a lack of 
normality, the non-parametric test, Spearman's rho, 
was used. 

4 FINDINGS 
To reiterate, our specific research questions for this analy-
sis are: · 

Qt. What effect do inspection parameters have on 
other inspection outcomes, besides total num­
ber of defects found? 

Q2. Are there variations in the heuristics that are 
appropriate for different situations? 

Q3. Are there variations in the heuristics that 
would better ensure that compliance would 
result in better inspection outcomes (i.e. that 
would improve the relationship between com­
pliance and effectiveness/ efficiency)? 

As a baseline, we began with an overview of how 
the heuristics perform in the dataset as a whole. These 
results are shown in Table 3. Again, we used the Mann­
Whitney test to compare the means between in­
compliance and out-of-compliance inspections. These 
results are mostly cons istent with those in Table 1, so 
from this point we will no longer distinguish between 
historical and contemporary inspections. However, it 
should be noted that older inspections, in general, con­
sumed more resou rces and found more defects, but 
were less efficient, than more recent inspections. 

Table 3. Testing original inspection heuristics on entire dataset. 

:: .~. COMBINED:DATASET (both historical 'and coriteninoranr) ~;~.i,i./'~~;~·~•f.,:i:~: ,~;-!'~~!:" • ~~ ~:)-·.:,..,l'i~ 
In-compliance inspec- Out-of-compliance in- Inspections 

tions snections following 
# of in- Avg. # of # of in- Avg. # heuristics 

spections resulting de- -spections of result- significantly 
fects ine defects better? 

·Team size 276 14.0 445 7.0 YES 
(p<0.0005) 

Meeting length 644 7.1 36 23.6 NO 

Page rate : ,·. 138 ; . ·. ·''/ 13.s :·-·. .; : . -~89 .·::~~: · -·· '6:5 ·. ·_:- YES . . . ' ••' •. . : . . ; :: , 
(P<0.0005) : .. , " .... - \ . : .. ~ . !' : • ,_. ••• ~ : . . 

--· 
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Table 4. Testing original inspection heuristics with respect to different dependent variables. 

·;. ·, · COMBINED DATASET (effect of heuristics ·on 'four·outcome variables) ;·:~·(:.~· : ;··.{:. ·: • 1 ... ~ ....... ~·: .. ;~;: 

Do inspections conforming to the heuristics perform better or worse 
than those that don't with respect to: 

Total effort? Total de- Defects per Defects per 
fects? page? hour? 

Team size worse better worse worse 

Meeting length better worse worse better 

Page rate . :·.>: ; worse'·" ; ~ ·::.· :,,;: : · better . : , . 
~·\ : . ::,i ·:-.!~i1~··~:· :;:· • ... ~ t>:-~· ·.~: /\/\'-, . , 

~: .·:: better .. .:.; 
:/.·/ ~ :;-... :. ~; ::~· ... :~:~ !:: 

.:-::;:/:•.worse ,;-=_ 
........... 1,.. J",; .... ~'?·"'·, 

Next, we repeated this analysis for all the depend­
ent variables. The results (comparison of means, 
shown in Table 4) show a much more complicated pic­
ture than that presented by the results on total defects 
alone (from Table 3). Columns 2 and 3 of Table 4 show 
that compliance to team size and page rate heuristics 
result in more effective but more expensive inspec­
tions. The heuristic for meeting length h;;is ;;in opposite 
effect. When one examines the outcomes of an inspec­
tion more closely (i.e. by normalizing the number of 
defects found, as in the last two columns of Table 4), 
the picture becomes yet more cloudy. For ex;;imple, 
what appears to be a benefit of complying with the 
team size heuristic (more total defects found) evapo­
rates when we consider defects per p;;ige or defects per 
hour. 

The results from this initial analysis imply that op­
timizing the effectiveness of an inspection (i.e. maxi­
mizing the number of defects found) is at odds with 
optimizing its efficiency (i.e. minimiz ing total e ffo rt 
spent). This led us to focus on one of our dependent 
variables, defects per hour (total number of defects 
found divided by total effort spent), which reflects the 
tradeoff between defect detection and effort. Maximiz­
ing defects per hour would likely be a concern of many 
inspections, particularly in projects where managers 
want to get the most out of the resources they con­
sume, and where there is not a willingness to spend a 
premium to ensure that every single defect is found. 
However, in other types of projects, particularly safety­
or mission-critical software, the concern may be in fac t 
to maximize the number of defects found, despite the 
cost. Thus, in the presentation below, we have gath­
ered two sets of evidence that our analysis yielded. 
First, we present findings that lead to guidance for pro­
jects concerned with maximizing the number of defects 
found (i.e. effectiveness). Then, in section 4.2, we pre­
sent findings that point to heuristics for maximizing 
defects per hour (i.e. efficiency). 

4.1 Maximizing total defects found 
Table 3 shows that more defects are found in inspec­
tions that are in conformance with the heuristics re­
lated to team size and page rate, than in those out of 
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conformance. In an effort to understand this phe­
nomenon better, we did a deeper analysis of the in­
spection dataset from the perspective of maximizing 
the number of defects found in an inspection. This led 
to the following finding: 

Finding 1: Inspections in which large numbers of de­
fects were reported involved higher levels of effort and 
more participants. 

While rather straightforward a nd seemingly obvious, 
this finding implies that neither higher levels of effort 
nor more participants alone will result in higher num­
bers of defects. It also implies that there is no "short­
cut" to finding more defects other than working hard 
at it. It should be noted that similar find ings were also . 
found with respect to the number of defects found per 
page, although for simplicity we focus simply on total 
defects found in this discussion. This .finding is sup­
ported principally by tests of correlation, but visual 
examinations of distributions, regression trees, and 
examination of outliers also contributed to under­
standing. Significant correlations were found between 
the number of defects found ;;ind all variables tested 
(number of inspection participants, total effort, meet­
ing effort, and preparation effort - more about page 
rate later). Correlation coefficients ranged from 0.49 
(for number of participants) to 0.79 (for total effort). 
Scatter plots showed little evidence of an upper bound 
on the benefits of adding resources (time and people) 
to inspections. For example, Figure 1 shows a scatter 
plot relating the mean number of defects found and 
the meeting length of an inspection (i.e. each dot corre­
sponds to the mean number of defects found for all 
inspections having the corresponding meeting length). 
There were only two inspections with meeting length 
of 3.5 hours, so the point corresponding to that value 
can be considered an anomaly and ignored for the 
moment. The scatter plot shows an increasing relation­
ship that does not level off, at least within the range of 
this dataset. 
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Figure 1. Scatterplot relating meeting lengt.h and 
number of defects found (each dot represents a mean 
over all inspections with the same meeting length). 

V'!e generat~d ~ numb~r of regression trees using 
various combinations of independent variables and 
number of defects found as the dependent variable, 
but few of them were very strong (most correlation 
coefficients were < 0.5, and all had a relative error >= 
~0%). However, !hey did provide some insight into the 
independent variables most likely to affect total defects 
found. _Since regression tree c1:nalysis is very sensitive 
to outhers, we removed 6 records with total numbers 
of defects found that were suspiciously high (all were 
above 150). Removing these outliers resulted in 
stronger and more informative trees. One (correlation 
~oeffici~nt .61, relative error 65%) used only the three 
inspection parameters (meeting length, team size, and 
page rate) as independent variables, while the second 
(correlation coefficient .74, relative error 56%) used all 
independent ·and intervening variables except the 
NASA Center at which the inspection took place (the 
Center dominated all other independent variables 
when it was included in the analysis). In both cases, 
the do~inant !ndep~nd~nt variable distinguishing be­
tween mspechons finding low vs. high numbers of 
defects was meeting length, which supports Finding 1 
bec~use meeting length ~s a .major component of effort. 

Figure 2 shows the distribution of total defects 
found, including the 6 "outliers" that were excluded 
from the regression tree analysis. The plot shows a 
large number of inspections with rel.1tively very high 
~umbe~s of d~fects found. We compared the set of 55 
mspechons with numbers of defects found more than 
one standard deviation above the mean to the remain­
ing inspections in terms of average team size, meeting 
length, and othe~ dependent variables. We found that 
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the high-defect inspections were higher effort (in terms 
?f meeting effort, preparation effort, and total effort), 
involved more participants, and found more defects 
per page than the rest of the inspections. All of these 
comparisons were signi ficant (p<.05) using the Mann­
Whitney test. Again, this supports the conclusion that 
the secret to finding more defects is not counter­
i~tuitive, but consists of using more people and more 
hme. 
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Figure 2. Distribution of number of defects found. 
The 25th percentile, median, and 75th percentile of 
the data are represented as.horizontal lines. 

Th~ relationship between page rate and inspection 
effectiveness deserves a bit more examination. The cur­
rent heuristics give different thresholds for the optimal 
page rate for d ifferent types of inspection artifacts 
(code, design, etc.). However, as can be seen from Table 
1, the per~e~tage of inspections conforming to the page 
rate heuristic has always been small, especially for the 
contemporary dataset. Moreover, conforming to the 
pnge rnte_ heu_risti~ results in more defects found only 
!~ . th~ h1~torical inspections, not the contemporary. 
l his 1n:1phes that the original page rate heuristic is 
mor~ difficult to adhere to, and less useful, than it was 
previously. This leads us to investigate how the page 
rate heuristic might be relaxed and what the effects of 
doing so would be. 
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Table 5. Variations in numbers of defects found in code inspections as page rate increases. 

.. 
··" . 'J .. :.. . .... ·· Average # of de- . · 

. fects found . 
· · Average# of defects/page (effective­

. ness decrease) ·. . . .- # of Inspections · · 

28 10 

77 20 

145 40 

258 80 

368 (100%) 2667 

As a starting point, we calculated the average num­
ber of defects found, ·and defects found per page, for 
code inspections with page rates under various thresh­
olds. The results are shown in Table 5. They show that, 
in fact, increasing the page rate does not have a severe 
impact on total defects found. However, there is a se­
vere penalty associated with the number of defects 
found per page. There is a significant correlation (p < 
· .05) between page rate and defects per page for code 
inspections. From Table 5, we see that relaxing the 
page rate heuristic to 20 pages/hour (as opposed to the 
recommended 10 pages/hour) results in an almost 
60% reduction in the number of defects found per 
page, and there is a 75% penalty when relaxing the 
page rate to 40 pages/hour. Further, the vast majority 
of code inspections are well above this threshold. 

Similar results were found for design and test in­
spections. For example, relaxing the page rate heuristic 
to 40 pages/hour (as compared to the recommended 
20 pages/hour) for design inspections results in a 28% 
reduction in defects found per page, and a 40% reduc­
tion for a page rate up to 80 pages/ hour. For test in­
spections, relaxing the heuristic to 40 pages/hour 
(from the recommended 20) results in a 40% hit in de­
fects found per page. There were very few require­
ments inspections in the dataset with data on both de­
fects and page rate, and these did not represent much 
variation in page rate, so this analysis was not very 
meaningful for requirements inspections. 

If we assume that the inspections in which the page 
rate was higher did not, in general, have lower true 
defect density (an unsubstantiated but not unreason­
able assumption), then these results imply that higher 
page rates are associated with missed defects. This is 
consistent with the justification for the original page 
rate heuristics, i.e. that higher page rates will result in 
a more superficial inspection. This finding was hinted 
at earlier, in fact, in the analysis presented in Table 4, 
which showed that, overall, inspections that conform 
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4.3 4.45 

4.1 1.81(59%) 

4.9 1.1(75%) 

4.6 0.7(84%) 

4.42 0.57(87%) 

to the page rate heuristic do in fact perform better than 
those that do not in terms of defects found per page. 
However, this leads to a dilemma. Table 1 shows that 
violating the page rate heuristic is common, and is be­
coming more common. Clearly, it is tempting, given 
schedule and budget pressures, to speed up the inspec­
tion process by increasing page rate, when it appears 
that developers can handle the increased amounts of 
material. This analysis shows, however, that there is a 
hefty price being paid for this. 

Finding 2: Inspections of all types (except possibly re­
quirements) would be significantly more effective (in 
terms of defects found per page) if they adhered to the 
original page rate heuristics. 

4.2 Maximizing defects per hour 
Another relevant measure when evaluating inspec­
tions is the efficiency of the inspection process, one 
indicator of which is the number of defects found in 
the inspection per person-hour of total effort. Under a 
variety of conditions (e.g. limited resources, software 
of low criticality, heavy reliance on testing, etc.), 
maximizing the defects found per hour may be a more 
important inspection goal than finding the maximum 
number of defects. With this in mind, we examined our 
dataset for insights into potential heuristics for maxi­
mizing the depend~nt variable "defects per hour." 

Our fi~t finding in this section paints a broad pic­
ture of defects per hour among the inspections in ou r 
dataset. It arises from the boxplot in Figure 3, which 
shows the distribution of defects per hour over the en­
tire datase~, as well as descriptive statistics. 

Finding 3: With a few exceptions (treated in later find­
ings), the defects per hour for most inspections re­
mains within a narrow range of 1-2 defects per hour of 
total effort. 
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Figure 3. Distribution of defects per hour over en­
tire dataset. 

While the range of values for defects per hour is 
over 16, both the mean and the median are less than 2. 
In fact, 75% of the values are less than 2. However, the 
clear presence of significant outliers in Figure 3 led us 
to further investigate this small collection of "super 
inspections" that resulted in abnormally high numbers 
of defects per hour. We defi ned a subset of our inspec­
tion data, which we ca lled "hyper DpH inspections", 
to include all inspections with defects per hour greater 
than one standard deviation above the mean for de­
fects per hour over all inspections, giving a threshold 
of about 3.4 defects per hour. The hyper DpH inspec­
tion set consisted of 52 inspections, with 496 inspec­
tions constituting the set of inspections with "normal" 
defects per hour values. 

We conducted a number of exploratory analyses on 
the hyper DpH inspection set to both characterize it 
and compare it to the rest of the dataset. From this 
analysis, we concluded that the hyper DpH inspections 
had both lower total effort and higher numbers of de­
fects found than other inspections. Further, the lower 
levels of effort were due to lower numbers of partici­
pants, shorter meeting times, and shorter preparation 
times. Seventy-five percent of the hyper DpH inspec­
tions had between 1 and 3 participants, and a meeting 
length between .25 and .5 hours. Hyper DpH inspec­
tions a lso tended to be more recent than other inspec­
tions, part of small projects, and were mostly (but not 
exclusively) code inspections. 

T~is analysis leads to the following finding: 

Finding 4: For code inspections on small projects, de­
fects per hour is maximized when the number of par-
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ticipants is between 1 and 3, and the meeting length is 
between .25 and .5 hours. 

This finding is meaningful in this context because 
inspection experts at NASA have been struggling with 
how to streamline the inspection process for small pro­
jects. Full inspections that conform to the inspection 
heuristics seem to be overkill for such projects, which 
can't afford the high levels of effort. Finding 4 suggests 
that there is in fact a streamlined, but still efficient, ap-
prooch. . 

Finding 4 was tested, using a Mann-Whitney test 
limited to contemporary code inspections from small 
projects, comparing values o~ d~f~cts per hour betwee~ 
those inspections that fell w1thm the thresholds speci­
fied in Finding 4 and those that did not (ignoring, fo r 
the moment, page rate, which will be discussed later). 
The results show that code inspections on small pro­
jects that are described by Finding 4 (1-3 participants 
and .25 - .5 hours meeting length) have higher num­
bers of defects per hour than those that don't (2.8 vs. 
1.8). However, this finding was not statistically signifi­
cant. The relevant dataset in this case is very small; 
only 23 code inspections from small projects had defect 
and effort data, 16 of which conformed to Finding 4. 

We then tested the relationship between compliance 
with the heuristics and defects per hour only on the 
"normal" inspections (i.e. excluding the hyper DpH 
set). The results agrees with the resu lts from the analy­
sis against the entire dataset (as presented in Table 4), 
where out-of-complianc~ inspections (with the excep­
tion of the meeting length heuristic) outperfo rm in­
compliance inspections. Thus, the results in Table 4 are 
not an artifact of the hyper DpH inspections. 

In an effort to gain further insight about what 
maximizes defects per hour, we generated several re­
gression trees, using defects per hour as the dependent 
variable, and various combinations of independent 
variables. Although none of the trees generated were 
very good (all had correlation coefficients <= 0.5, and 
rela tive error >= 78%), they did provide some insight 
into the independent variables most likely to affect 
defects per hour. When using all independent and in­
tervening variables in the tree, the most significant 
variable was the NASA Center at which the inspection 
took place. This implies that the factors affecting de­
fects per hour are different for each Center, thus mak­
ing it hard to generalize. It may also point to undocu­
mented differences in inspection processes between 
Centers. When the Center variable was removed from 
the analysis, the resulting tree showed tha t meeting 
length and software type were the most influential 
variables. The role of meeting length is obvious, as it is 
involved in the calculation of effort. Looking more 
closely at the role of software type (e.g. attitude, orbit 
software, etc.), we compared the mean defects per hour 
in the "normal" inspections of each software type. We 
found that only inspections of software classified as 
"other" had significantly higher values for defects per 
hour than inspections of any other software types. This 
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result is not very informative, except that it indicates 
that application domnin may play some role in maxi­
mizing defects per hour, even within the range speci­
fied in Finding 3. 

We next turned our a ttention to the pnge rate heu­
ristic and its relationship to efficiency (i.e. defects per 
hour). As mentioned previously, the current heuristics 
specify different page rate thresholds for different 
types of inspected · artifacts (code, design, etc.). The 
hyper DpH inspections (which were mos~ly code in­
spections) had lower page rates on average than other 
inspections, but the median is similar to the "normal" 
inspections. The difference in means is not significant; 
both groups have very large standard deviations for 
page rate, and the box plot for this data (see Figure 4) 
shows that the difference in means is due primarily to 
a number of inspections. in the normal DpH set with 
extremely high page rates. Most of the inspections 
with very high page rates did not result in a high 
number of defects per hour (i.e. they are in the normal 
DpH set). This implies that the page rate has little ef­
fect on whether an inspection has a high number of 
defects per hour or not, except in the case where the 
page rate is exceptionally high. A Spearman test for 
correlation between page rate and defects per hour for 
code inspections was not s\gnificant. The same is true 
for requirements and test inspections, but there was a 
significant but weak (coefficient of .255) correlation for 
design inspections. 
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Figure 4: Comparison of page rates in "hyper 
DpH" inspections and other code inspections. 

We also compared inspections of each type con­
fo rming to different page rate thresholds to see if they 
behaved differently in terms of defects found per hour 
(similar to the analysis shown in Table 5 using total 
defects found and defects found per page). This analy­
sis shows no effect of page rnte for test or requirements 
inspections (of which there were too few for the analy­
sis to be meaningful). Ho"Yever, a pattern did emerge 
for code inspections. The analysis is shown in Table 6, 
where we see that, with the exception of a few inspec-

•• -- - 1f 

tions with pnge rates less than 10 (which happens to be 
the original page rate heuristic threshold), efficiency 
increases as page rate increases. That is, when more 
pages/ hour are inspected, more defects are found per 
hour. However, the in~reases are not large, and recall 
that t.he correlation between page rate and defects per 
hour, for code inspections, is not signi ficant. 

Table 6. Variations in numbers of defects found 
per hour in code inspe_ctions as page rate increases. 

, -~~?,",:,.,,,.,w,1\<"a..;.~,.~~·~f:J~~~''',.tt1 ~":::'~~~~~!.;} 
-~• CODE INSPECTION,S,.,.,.~~i.ait:_.'-'if«;! ~-·· . oe, ::SW{#'P...:...:..::.>~~ 

·- ., J • :: : '... •• ... ·<: and round, on aver- : 
Thi~ m~riY.i"1· . .'h'.ad a· page rat~ . 'age: thls'ma~y ~e:- ·,;: 
spectlons: . :_ . . leu ihao·: . . ·: . . fects oer hour: . :.:. :" 

13 10 1.89 

23 15 1.32 

35 20 1.36 

82 40 1.67 

170 80 1.87 

192 JOO 1.92 

255 (100%) 2667 1.96 

Thus, we are motivated to relax, but not eliminate, 
the page rate heuristic for code inspections. This will 
make it easier for inspection planners to stay within 
the recommended range for page rate, but still obtain a 
high number of defects per hour. As a candidate 
threshold for the new page rate heuristic, we choose 
the 75th percentile of the page rate range for hyper 
DpH inspections (see Figure 4), which is 95 . 

Finding 5: The efficiency of a code inspection (based 
on defects per hour) can be preserved even when 
the page rate is increased, but the page rate should 
not be set arbitrarily high. It is still not recom­
mended to exceed 95 pages/hour . 

For design inspections, there is a significant correla­
tion between page rate and defects per hour, where 
defects per hour also increases with page rate, up to 
about 80 pages/hour, after which it decreases (see Ta­
ble 7). Thus we conclude in Finding 6 tha t, for design 
inspections, the heuristic for page rate could be relaxed 
to 80 pages/ hour. Note that there is a tradeoff between 
leveraging Findings 5 or 6 with Finding 2, where relax­
ing the page rate could lead to missing more defects. 
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Table 7. Variations in numbers of defects found 
per hour in design inspections as page rate increases. 

i:¥: -DESIGN INSPECTIONS >~t~_,'-;,~,i:::~?-':;~:w-1" ~;1,r-if 

# or lnspec- · · .. Page rate_less : .. Aver11ge ~ or de-
. tioris . . th11n·. · · . · reds/hour found . 

63 20 0.8 

108 40 0.84 

129 60 0.94 

144 80 1.01 

155(100%) 230 0.99 

Fin ding 6: For design inspections, efficiency can be 
improved by relaxing the page rate heuristic to 80 
pages/hour. 

5 D ISCUSSION 

Below, we reiterate the specific research questions that 
guided our analysis and discuss the major related find­
ings. 

Q1 : What effect do inspection parameters have on 
other inspection outcomes, beside.s total num­
ber of defects found? 

As shown in Table 4, compliance with the inspection 
heuristics brings inconsistent results. The team size 
and page rate heuristics generally help in improving 
the defect detection effectiveness of the inspection, but 
decrease efficiency in terms of effort expended and 
defects per hour. Moreover, the effectiveness benefits 
of the number of participants heuristic evaporates 
when we examine the number of defects detected per 
page. The meeting length heuristic has the opposite 
effect, i.e. being in compliance results in more efficient 
but less effective inspections. However, the effect of the 
meeting length heuristic is a bit difficult to assess be­
cause so few of the inspections in the dataset were out 
of compliance. Consequently, we can conclude that the 
original inspection heuristics had room for improve­
ment. 

Findings 3-6 s ummarize our findings about the ef­
fect of the inspection parameters on defects found per 
hour, which is an outcome variable that characterizes 
the efficiency of an inspection. Finding 3 show that the 
inspection parameters have very little effect'on the effi­
ciency of most inspections. However, Finding 4 implies 
that, for code inspections on small projects, certain 
values of inspection team size and meeting length can 
maximize defects found per hour. Also, higher values 
for page rate appear to produce equal to higher defects 
found per hour for design and code inspections (Find­
ings 5 and 6). However, acco rding to Find ing 2, this 
increased efficiency comes at a price in terms of much 
lower numbers of defects found per page. This implies 
that page rate greatly affects the tradeoff between in-
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spection efficiency and effectiveness, and so the choice 
of a value for page rate must be made carefu lly with 
regard to the goals of any particular inspection. 

Q2: Are there variations in the heuristics that are 
appropriate. for different context factors? 

In addressing Q2, we searched for evidence of sig­
nificant differences in inspection behavior in all the 
subsets we could form based on context factors (i.e. the 
intervening ·variables in Table 2). The most interesting 
variation we found, encapsulated in Finding 4, had to 
do with code inspections on small projects. For this set 
of inspections, much lower thresholds for meeting 
length and number of participants appeared to result 
in high numbers of defects per hour. 

Q3: Are there variations in the heuristics that 
would strengthen the relationship between 
compliance and effectiveness or efficiency? 

Our findings shed light on a complicated story 
about how inspection outcomes are related to their 
inputs, the subject of Q3. Part of our original intent 
was to update the inspection planning heuristics con~ 
cerning appropriate values for the number of inspec: 
tion participants, the length of the meeting, and the 
inspection page rate. In some cases, we were able to 
characterize the benefits and risks of relaxing the cur­
rent heuristics, e.g. for page rate (Findings 2, 5 and 6). 
We found it difficult, however, to formulate hard 
thresholds for the heuristics based on our dataset. The 
original heuristics were aimed at maximizing the 
number of defects found, and at least in part they still 
achieve that goal (see Table 3). We also found that 
more resources brought to bear in an inspection will 
result in more defects found (Finding 1). What we did 
not find, however, was any upper limit to the benefit of 
more resources. That is, there appears to be no point of 
diminishing returns, at least within the ranges repre­
sented by our dataset. More inspectors spending more 
time will always, it appears, result in more defects be­
ing found. This makes it difficult to formulate any heu­
ristic in the format currently being used (i.e. giving 
recommended ranges for the inspection parameters). 

However, defect detection is not the entire story, so 
we looked at other inspection outcomes that take into 
account inspection costs, focusing on the number of 
defects found per person-hour of effort. Finding a set 
of heuristics that maximized defects per hour would 
provi.de a balanced tradeoff between inspection effec­
tiveness and efficiency. However, such heuristics 
proved to be elusive. We found tha t, except for a small 
subset of inspections, the defects per hour remained in 
a fairly small range and appeared to be unaffected by 
the inspection parameters or other intervening vari­
ables (Finding 3). For one fa irly narrow subset of in­
spections, however, we found that a very different set 
of heuristics would help us achieve significantly 
higher numbers of defects per hour (Finding 4). 
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There are, clearly, limitations to our analysis and to 
the

1
dataset upon which it is based. One major limita­

tion is the lack of field defect data, which means that 
our measures of inspection effectiveness are limited to 
the raw numbers of defects found. The true measure of 
inspection effectiveness would be the percentage of 
total defects in the product that are found by the in­
spection. We did not have the ability to take that into 
consideration. Our dataset, although large by the stan­
dards of most empirical studies in software engineer­
ing, still would have been more useful had it been 
larger and more diverse. There were many combina­
tions of variables that could not be tested because of a 
lack of data. 

6 RELATED WORK 

There exist a number of articles in the literature 
recommending values of planning parameters for 
software technical reviews and inspections. We catego­
rize these into (1) work that provides recommenda­
tions derived from personal or community insights; (2) 
work that reports the values used in industrial inspec­
tion activities; and (3) work that makes recommenda­
tions formed from results of controlled experiments. 

Table 8 summarizes recommendations in the litera­
ture foiling into the first category. The second category 
includes work by Blakely and Boles [4] that reported 
the use of a page rate of 200 LoC/ hr for code inspec­
tion activities at Hewlett-Packard. Doolan [51 reported 
on requirements inspections at the Seismic Software 
Support Group (SSSG) at Shell Research where inspec­
tion teams usually consisted of 5-7 persons, inspecting 
7-8 pages per hour, with meeting length of rio more 
than 2 hours. Eickt et al [6] provided data from 13 re­
views at AT&T. The review meetings were scheduled 
in 2-hour time slots with 6-10 reviewers for require­
ments reviews and 5-8 reviewers for design reviews. 

We can observe little agreement as to the recom­
mended team size, although there is a tendency to 
keep it relatively small, especially for code inspections. 
In industry, inspection team size tends to be larger 
than the recommended team size in the literature from 
Table 8. A meeting length of 2 hours seems to be the 
accepted norm. Comparing the suggested page rates 
introduces an additional 'Challenge due to the different 
units (e.g. LOC vs. pages) used to express the measure 
for different artifacts. We can still observe several 
commonalities. For example, the page rates for code 
inspection tend to be within 150-200 LOC per hour. On 
the other hand, the page rates for text-based docu-
ments range widely from 3-8 pages per hour. 

Table 8 Related work suggesting values for inspection planning parameters based on personal or collective 
experience, ordered chronologically 

Authors Recommended 
Team Size 

IEEE Standard for Soft- 3-6 
ware Review (7] 
Fagan [8] 4 (increase team size only 

if inspected code belongs 
in a number of interfaces) 

Ackerman et al (91 3 (includin~ 1 moderator) 
Gilb and Graham (10] 2-3 for efficiency or 4-5 for 

effectiveness 

Barnard and Price [ 11 J 

Owens 1121 5-6 for requirement or 1-2 
for source code 

Johnson [13] 6-9 
Lnitenburger and DeBaud 
[141 

3-4 (including 1 author 
and 1 moderator) 

Wiegers [15] 

Table 9 summarizes related work exploring the re­
lationships between various planning parameters and 
the effectiveness and efficiency of inspections through 
controlled studies. It is difficult to make comparisons 
among these studies mainly due to the different way 
each one measures effectiveness and efficiency, i_n addi-

- . • • ~ • ·--- ·- . . • .. ---- ij 

Meetine: Lene:ffi Pae:e Rate 

2 hours (no more than 2 
sessions in a day) 

0.5-1.5 pages (1 page -
600 non-commentary 
words) and decrease the 
rate for high risk docu-
ments 
100-150 LOC (with maxi-
mum of 500 LOC) 

Less frequent of meetine:s 

2 hours 3-4 pages for requirement, 
design, project plans, and 
process description; and 
150-200 LOC for source 

tion to what planning parameters they investigated. 
Note that some of the studies explored planning pa­
rameters that were not .iddressed by the NASA heuris­
tics; however they serve to point out the diverse fac­
tors that may impact an inspection's performance. 

13 
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Table 9 Related work based on controlled experiments, ordered alphabetically 

Authors Outcome Measures Planning Parameters - Findings 
Boodoo et al Efficiency - cost savings For design inspections: 
[16) from doing inspection Team size: Optimal team size increases ~hen cost of post-

(and finding defects early) design detection and fixing activities are higher and meeting 
duration is lower. 

Buck (extracted Effectiveness - number of Inspection rate: 90-125 non-commentary statements per hour 
from [171) defects for code inspections, but more variable for requirements, test 

plans, and user documentation 
Halling and Effectiveness - defects lost Team size: No significant difference between teams of size 5 
Biffl [181 .ind gained from meetine and of size 6 . 
Laitenberger et Effectiveness - number of Preparation rate: Preparation rate significantly affects effective-
al [19J defects found ness. 

Material size: Material size has only limited impact on effec-
tiveness. 

Porter et al [20) Effectiveness- defects For code inspections: . 
fou11d / KN CSL Team size: No significant difference between teams of size 2 

and of size 4, but both were better than teams of 1. 
Raz and Yaung Effectiveness- probability For design inspections 
[21J of defect escaped the in- Effort: Effectiveness is reduced with the more effort spent. 

spections Material size: It is also reduced when inspected material size is 
larger. On average, material of size less than 600 KLoC are less 
than 50% likely to contain escaped defects. 

Weller (22) Effectiveness - defects Team size: 4-person teams were twice as effective and more 
found/KLoC than twice as efficient as 3-person teams. 
Efficiency - effort Preparation rate: Tenms with lower preparation rates (<200 

lines per hour) had higher effectiveness than teams with higher 
preparation rates. This increase of effectiveness can offset the 
loss of effectiveness from using teams with smaller size. 

Agreement is mixed between our findings and 
those in the literature summarized in this section. For 
example, we fo(Jnd that increasing effort through in­
creasing team size can increase defect detection. Fur­
ther, we did not find one team size in terms of maxi­
mizing effectiveness. On the other hand, we agree with 
several authors who recommend smaller team sizes for 
code inspections, although we could only make such a 
recommendation in the context of small projects and 
when efficiency is the primary goal. Similarly, we 
found that increasing inspection effort through increas­
ing the meeting length also provides an increase in 
inspection effectiveness. This finding seems to conflict 
with the s trict 2-hour meeting length established by 
the community, although we only explored this rela­
tionship using meeting length values up to 4 hours. 
Our finding, which states that by increasing inspection 
effort we can also increase inspection effectiveness, 
also disagrees with Raz and Yaung's finding (21]. Fi­
nally, our find ings with respect to page rate are in line 
with much of the literature, that repeatedly finds that 
defects are missed in inspections when the page rate is 
too high [19, 21, 22]. 

ploratory analysis of data from a diverse set of soft­
ware inspections at NASA. Although the data had 
some limitations, they provided an unusually rich 
view of the variety in inspection parnmeters, context 
factors, and outcomes. The major findings of this 
analysis include: 

Finding 1: Inspections in which large numbers of 
defects were reported involved higher levels of ef­
fort and more participants. 

Finding 2: Inspections of all types (except possibly 
requirements) .would be significantly more effective 
if they adhered to the original NASA page rate heu­
ristics. 

Finding 3: With a few exceptions (treated in Finding 
4), the defects per hour for most inspections remains 
within a narrow range of 1-2 defects per hour of to­
tal effort. 

Finding 4: For code inspections on small projects, 
defects per hour is maximized when the number of 
participants is between 1 and 3, and the meeting 
length is between .25 and .5 hours. 7 IMPLICATIONS AND CONCLUSIONS 

fn this paper, we have presented results from an ex- Findine 5: The efficiencv of a code inspection (based 
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on defects per hour) cnn be preserved even when 
the page rnte is incrensed, but the pnge rnte should 
not be set arbitrarily high. 1t is still not recom­
mended to exceed 95 pages/ hour. 

Finding 6: For design inspections, efficiency can be 
improved by relnxing the page rate heuristic to 80 
pages/hour. 

While these findings have very specific implicntions 
for inspection planning heuristics at NASA, we do not 
consider the thresholds indicated to be generalizable to 
any other organization. However, there are more gen­
eral implications of these findings, and the analysis 
that led to them, that are relevant for the rest of the 
software community. 

First, it is clear from our analysis that it is very diffi­
cult to find an optimal configuration of parameters (i.e. 
a "sweet spot'') that represents a good balance between 
inspection effectiveness and efficiency. Adding more 
resources to an inspection will always result in more 
defects found (Finding 1), and the defects per hour 
(number of defects found per person-hour of total in­
spection effort) will always remain within a fairly nar­
row range, with few exceptions (Finding 3). Intuitively, 
one must imagine that there is, in fact, an upper bound 
to the amount of resources (people and time) that can 
be effectively brought to bear on an inspection, but 
su'ch a bound does not seem to be evident in our 
dataset. 

Second, it appears that any inspection heuristics 
need to be revisited from time to time, .both from the 
point of view of effectiveness and compliance. In our 
dataset, it was clear that NASA teams were increas­
ingly out of compliance with the page rate heuristic, 
i.e. they were inspecting much more material per hour 
of meeting time than the heuristics recommended. 
Findings 5 and 6 show, moreover, that efficiency is 
equal or enhanced when the page rate is allowed to 
increase. However, Finding 2 shows that a significant 
cost, in terms of inspection effectiveness (in particular 
defects found per pnge), is paid for this increase in effi­
ciency and, in fact, a very large number of inspections 
in the dataset would most likely have been more effec­
tive if they had conformed to the original page rate 
heuristic. 

Finnlly, the analysis we were able to do, and the in­
sights gained, point to the value of collecting and ana­
lyzing detailed inspection data. NASA has been a pio­
neer and a leader in the practice of software inspec­
tions [23) for severnl decades, nnd so is in the unusual 
(but hopefully not unique) position of having a rich 
historical record from which to learn about and im­
prove upon inspection practice. Our analysis shows 
that having such a rich experience base can yield valu­
able feedback that is directly actionable for any organi­
zation. 

,, 
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