4,710 research outputs found

    Quantum teleportation with nonclassical correlated states in noninertial frames

    Full text link
    Quantum teleportation is studied in noninertial frame, for fermionic case, when Alice and Bob share a general nonclassical correlated state. In noninertial frames two fidelities of teleportation are given. It is found that the average fidelity of teleportation from a separable and nonclassical correlated state is increasing with the amount of nonclassical correlation of the state. However, for any particular nonclassical correlated state, the fidelity of teleportation decreases by increasing the acceleration.Comment: 10 pages, 3 figures, expanded version to appear in Quantum Inf. Proces

    A Comprehensive Analysis of Partial Shading Effect on Output Parameters of a Grid-connected PV System

    Get PDF
    One of the issues of grid-connected photovoltaic systems is the effect of the partial shading on the key parameters and performance of the system. In practice, a share of the entire PV panel may shadded because of the various reasons, inevitably. In this case, the key parameters of the system output are affected with respect to the shading extent and paradigm. In this paper, the effects of the various partial shading patterns on the ouput of the system are examined. This is performed by deriving relevant equations and appropriate modeling of the system and defining different scenarios. The analysis on the system performance is carried out on the dominant output parameters including panel voltage, panel power, and total harmonic distortion (THD) of the inverter. Also, the study considers the effect of using bypass diodes in the panels or not. Addintionally, to compare derived conclusions, the study is implementd on a practical system. The set up is made up of a 7-level multi-level inverter, a Z-source converter, and 1 kW lateral circuitry. The real world test results of the study demonstrate a negligible deviation compared to the simulation results

    Exploring the cyclic loads conditions on behavior of modified connector plate of steel frame CBF

    Get PDF
    One of the disadvantages of convergent steel frames, is loss of strength of this brace under cyclic loading. Studies in recent years show that in the event of changes in raw form Gusset plate sheet, and the creation of suitable geometry and as well as the type of consumable materials used for it; initial conditions can be provided to increase ductility and resulting increased in energy dissipation. Braces as earthquake resistant elements in different ways are applied to cope with lateral forces of earthquake. One important element of these systems is Gusset plate sheets which plays an important role in the transmission of lateral forces. The behavior of these members can be investigated under tensile and comprehensive loading uniform. The pressure behavior due to its complexity and more failure modes have been less studied. According to investigation conducted, the desired failure mode of Gusset plates under the pressure is surrendered. However, in most cases the connection sheet under pressure surrenders to bucking load and cannot be lodged with the brittle failure and the result does not show good ductility. In order to change the dominant failure mode and delaying bucking of stiffeners Gusset plate the stiffness and changes in their geometry are used. In this study, using Abacus software to evaluate the impact of changes in plate Gusset and the stiffeners edge of sheets have been examined. The results obtained indicate that the postponement of bucking curves in the modified connector plate and thereby improve behavior of connector plates under the pressure forces and also represents the high configurability of modified connector sheets. Keywords: Gusset Plate, Plasticity, Buckling, Brittle Failure

    Prediction of Water Activity Coefficient in TEG-Water System Using Diffusion Neural Network (DNN)

    Get PDF
    Accurate determination of activity coefficients of water in a binary triethylene glycol (TEG)-water system, is of prime concern in designing the natural gas dehydration process. In this work, a hybrid model (a combination of information diffusion theory and neural network) and a so-called diffusion neural network (DNN) have been developed for the prediction of activity coefficients of a binary TEG-water system. Owing to the insufficient experimental data available in the literature for binary mixtures, and in particular for infinite dilution, we have employed the information diffusion technique as a tool in extrapolating data points from the original data. By means of this technique, a new dataset has been trained and optimized for the DNN model with more nodes in the input and the output layers. The result of this study reveals that DNN model is superior to the conventional neural nets in predicting the activity coefficient of water in the range of temperature (293–387.6 K) and mole fractions with mean absolute error of 0.31 % (MAE = 0.31 %), and high correlation coefficient of 0.999 (r = 0.999). Furthermore, the results of this work using DNN have also been compared with Parrish’s correlation. The findings of this work demonstrate that the DNN model exhibits better results over Parrish’s correlation in predicting the activity coefficients of water in a binary triethylene glycol-water system with a mean absolute error of 5.03 percent (MAE = 5.03 %)

    Critical gap analysis of merging sections at Kuala Lumpur middle ring road

    Get PDF
    At merging sections, drivers normally slow down and sometimes need to stop while seeking a suitable gap before merging with the mainstream. Thus, there will always be several observed rejected gaps and an accepted gap which can be used to determine the smallest average gap, so-called critical gap. This study was carried out to determine critical gap values at selected merging sections at the Jalan Tun Razak and the DUKE Expressway uses the Maximum Likelihood method. Data were collected by using videotaping method and the gap acceptance data were extracted for analysis. A gap acceptance event at highway merging sections in this study was redefined due to unavailability of stopping vehicles at the ramp junction. Therefore, the gap data were estimated starting from a ramp’s vehicle passing the end of gore marking to where it merges with the mainstream. The analysis of the critical gap takes into consideration accepted gaps greater than 5 seconds to avoid forced entry due to lead impedance of successive vehicles on mainstream. The critical gap values obtained in this study, according to vehicle classification were ranged between 4.5 to 5.0 seconds, which are slightly smaller if compared to critical gap values for particularly left turn from minor movement at priority junction of the Arahan Teknik (Jalan) 11/87 and the United States Highway Capacity Manual 2000. The findings shall help to study driving behavior of local drivers, especially at priority control facilities such as merging sections
    corecore