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Abstract
Main conclusion The sunflower sesquiterpene lactones 8-epixanthatin and tomentosin can bind to the hydrophobic 
pocket of sunflower KAI2 with an affinity much higher than for the exogenous ligand KAR.

Abstract Sesquiterpene lactones (STLs) are secondary plant metabolites with a wide range of biological, such as anti-
microbial, activities. Intriguingly, the STLs have also been implicated in plant development: in several Asteraceae, STL levels 
correlate with the photo-inhibition of hypocotyl elongation. Although this effect was suggested to be due to auxin transport 
inhibition, there is no structural–functional evidence for this claim. Intriguingly, the light-induced inhibition of hypocotyl 
elongation in Arabidopsis has been ascribed to HYPOSENSITIVE TO LIGHT/KARRIKIN-INSENSITIVE2 (HTL/KAI2) 
signaling. KAI2 was discovered because of its affinity to the smoke-derived karrikin (KAR), though it is generally assumed 
that KAI2 has another, endogenous but so far elusive, ligand rather than the exogenous KARs. Here, we postulate that the 
effect of STLs on hypocotyl elongation is mediated through KAI2 signaling. To support this hypothesis, we have generated 
homology models of the sunflower KAI2s (HaKAI2s) and used them for molecular docking studies with STLs. Our results 
show that particularly two sunflower STLs, 8-epixanthatin and tomentosin, can bind to the hydrophobic pockets of HaKAI2s 
with high affinity. Our results are in line with a recent study, showing that these two STLs accumulate in the light-exposed 
hypocotyls of sunflower. This finding sheds light on the effect of STLs in hypocotyl elongation that has been reported for 
many decades but without conclusive insight in the elusive mechanism underlying this effect.

Keywords 3D structure models · 8-Epixanthatin · Germination · Hypocotyl elongation · KAI2 signaling · Strigolactone

Sesquiterpene lactones (STLs) are secondary plant metabo-
lites with a wide range of biological, such as anti-microbial, 
activities (Spring and Hager 1982; Chadwick et al. 2013; Liu 
et al. 2018). Intriguingly, the STLs have also been implicated 
in plant development: particularly in sunflower, STL levels 
correlate with the photo-inhibition of hypocotyl elongation 
(Spring and Hager 1982; Yokotani-Tomita et al. 1999; Arai 

et al. 2013). Although this effect was suggested to be due 
to auxin transport inhibition, there is no structural–func-
tional evidence for this claim (Arai et al. 2013; Ueda et al. 
2013). Intriguingly, the light-induced inhibition of hypocotyl 
elongation in Arabidopsis has been ascribed to HYPOSEN-
SITIVE TO LIGHT/KARRIKIN-INSENSITIVE2 (HTL/
KAI2) signaling (Sun and Ni 2011; Waters and Smith 2013). 
KAI2 was discovered because of its affinity to the smoke-
derived karrikin (KAR), though it is generally assumed that 
KAI2 has another, endogenous but so far elusive, ligand 
rather than the exogenous KARs (Conn and Nelson 2016). 
Here, we postulate that the effect of STLs on hypocotyl 
elongation is mediated through KAI2 signaling. To support 
this hypothesis, we have generated homology models of the 
sunflower KAI2s (HaKAI2s) and used them for molecular 
docking studies with STLs. Our results show that particu-
larly two sunflower STLs, 8-epixanthatin and tomentosin, 
can bind to the hydrophobic pockets of HaKAI2s with high 
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affinity. Our results are in line with a recent study, show-
ing that these two STLs accumulate in the light-exposed 
hypocotyls of sunflower (Spring et al. 2020). This finding 
sheds light on the effect of STLs in hypocotyl elongation that 
has been reported for many decades but without conclusive 
insight in the elusive mechanism underlying this effect.

A number of studies showed that in sunflower, exposure 
to light results in an increase in the concentration of STLs in 
the hypocotyl, which correlates with the inhibition of elon-
gation (Spring and Hager 1982; Yokotani-Tomita et al. 1999; 
Arai et al. 2013; Ueda et al. 2013). Moreover, accumulation 
of the STL, 8-epixanthatin, in the blue light-exposed side 
of sunflower hypocotyls was demonstrated and suggested 
to inhibit elongation, thus causing curvature toward the 
light. And finally, the application of exogenous STLs such 
as 8-epixanthatin significantly reduces the elongation of 
hypocotyls (Yokotani-Tomita et al. 1999).

The inhibition of hypocotyl elongation under light is also 
a well-known characteristic of KAR perception by plants 
(Sun and Ni 2011; Waters and Smith 2013). KARs are 
compounds derived from smoke that inhibit the hypocotyl 
elongation of Arabidopsis thaliana under blue and red light. 
KARs bind to KAI2, and hence induce seed germination and 
inhibit hypocotyl elongation (Nelson et al. 2010; Waters and 
Smith 2013). There is thus a striking similarity between the 
hypocotyl elongation inhibitory effects reported for STLs 
and KARs. Studies on the Arabidopsis kai2-2 mutant—that 
has an increased hypocotyl length—have suggested that 
KAI2 has an unknown endogenous ligand, coined KAI2 
ligand (KL) (Conn and Nelson 2016). Most likely, KL acts 
in a similar fashion as KARs to activate KAI2 signaling, 
resulting in the same phenotypes. It is important to note that 
all efforts to identify KL have so far failed.

Over the past few years, a number of studies on the root 
parasitic Orobanchaceae showed that they have multiple 
copies of KAI2/HTLs. In Striga hermonthica, for example, 
the most studied parasitic plant species in this family, KAI2 
underwent extensive gene duplication and it has at least 11 
HTLs. Intriguingly, these receptors were shown to perceive 
exogenous signals, the so-called germination stimulants that 
are exuded from the roots of their host plant, which ensures 
that germination occurs near a host root (Conn et al. 2015; 
Toh et al. 2015; Bouwmeester et al. 2020). The germina-
tion stimulants for most parasitic plant species belong to 
the strigolactones, an intriguing class of compounds with 
endogenous, hormonal, roles as well as rhizosphere signal-
ing activity (Bouwmeester et al. 2020). However, the ger-
mination of Orobanche cumana, a root parasitic plant that 
highly specifically parasitizes sunflower, was shown to be 
primarily induced by STLs (Joel et al. 2011; Raupp and 
Spring 2013). The root exudate of sunflower contains STLs 
such as dehydrocostuslactone, costunolide, tomentosin, and 
8-epixanthatin (Joel et al. 2011; Raupp and Spring 2013). 

This strongly suggest that one or more STLs can bind to one 
of the O. cumana KAI2/HTL receptors and induce KAI2/
HTL signaling and thus germination.

A recent study showed that the exposure of sunflower 
cotyledons to blue light results in a fast accumulation (< 2 h) 
of 8-epixanthatin and tomentosin in the hypocotyl, which 
continues until reaching a maximum at 72 h (Spring et al. 
2020). The other STLs, dehydrocostus lactone (which is 
abundantly present in roots) and costunolide, were only pre-
sent in trace amounts and their concentrations did not change 
over time. This suggests that particularly 8-epixanthatin and 
tomentosin are responsible for the inhibition of hypocotyl 
elongation. The four STLs are also present in dry sunflower 
seeds, although in very low concentration. Considering the 
role of KAI2 signaling in germination, they may therefore 
also be involved in (sunflower) seed germination.

Based on all the above, we postulate that the STLs, 
8-epixanthatin and tomentosin, in sunflower are the main 
ligands of HaKAI2s. To test our hypothesis, we identified 
two KAI2 homologs from the annotated genome sequence 
of H. annuus, and performed homology modeling using 
YASARA version 19.12.14 (Fig. 1a, b). The percentage 
identity of HaKAI2a and HAKAI2b is 86% (233 out of 
279 amino acid residues are identical). The 3D structures 
of the four STLs were obtained from the PubChem Com-
pound library as sdf files. For molecular docking, we used 
the Autodock Vina algorithm integrated in YASARA using 
the protein models with the highest Z Score.

Molecular docking showed that 8-epixanthatin and 
tomentosin fit into the hydrophobic-binding pockets of 
HalKAI2a and b (Fig. 1c, f) with high binding affinity (Kd 
of 3.2 and 2.7 µM for 8-epixanthatin and 6.0 and 6.2 µM 
for tomentosin for HaKAI2a and b, respectively). The 
hydrophobic amino acid residues involved in the binding 
of the STLs in the pocket are depicted in Fig. 1c, d. Dehy-
drocostus lactone and costunolide do not fit properly in the 
hydrophobic pockets of the modeled receptors. As expected, 
also KARs (KAR1 and 2) bind the hydrophobic pockets of 
HalKAI2a, but with c. 25- to 50-fold lower affinity than the 
STLs (Kd of 165 µM for KAR1 and 195 µM for KAR2). 
Surprisingly, Arabidopsis KAI2 also strongly binds 8-epix-
anthatin and tomentosin with estimated Kd values of about 
1 and 2 µM, respectively, compared with a Kd value for 
KAR1 of 57 µM, a significantly lower affinity than for the 
STLs. The latter value matches well with the experimentally 
obtained Kd of AtKAI2 for KAR1, which ranges from 4.6 to 
148 µM (Sun et al. 2020).

KAI2 has the catalytic triad residues, Ser95-Asp217-
His246, capable of hydrolyzing butanolide substrates (Naka-
mura et al. 2013; De Saint Germain et al. 2016; Yao et al. 
2016). However, KAI2 hydrolysis activity for KARs has not 
been reported (Xu et al. 2016). Indeed, it is under discussion 
whether hydrolysis is required for signal transduction (Zhao 
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et al. 2013; Shabek et al. 2018; Seto et al. 2019; Yao and 
Waters 2020). Thus, KL may be a compound or a group of 
compounds that cannot undergo hydrolysis and share struc-
tural similarity with KARs. Our results suggest that STLs 

may be a member of this group. Sesquiterpenes have been 
detected in all vascular plants, and in many other organ-
isms such as insects and fungi. Also Arabidopsis produces 
a large variety of sesquiterpenes (Tholl et al. 2005; Ro et al. 

Fig. 1  Homology models of 
HaKAI2s and their interaction 
with STLs. a and b Homology 
model of HaKAI2a (in red) and 
HaKAI2b (in blue). The overall 
Z score (comprising dihedral, 
and 1D packing and 3D packing 
Z scores) for the HAKAI2a and 
HaKAI2b models is − 0.07 and 
− 0.09, respectively. c Chemical 
structures of karrikin1, 8-epix-
anthatin, and tomentosin. d 
and e The hydrophobic-binding 
pocket of HaKAI2a (d) and 
HaKAI2b (e) accommodates 
8-epixanthatin (8-epi, red) and 
tomentosin (tom, green). The 
amino acid residues involved in 
the interaction with 8-epixan-
thatin and tomentosin are shown 
in yellow. f and g 8-Epixan-
thatin (f) and tomentosin (g) fit 
into the hydrophobic pockets of 
HaKAI2a and HaKAI2b. The 
hydrophobic amino acid resi-
dues in the pockets are marked 
in yellow
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2006). Oxidized derivatives of these sesquiterpenes could 
be potential candidates for KL, although, to our knowledge, 
STLs have not yet been reported in Arabidopsis.

With this study, we provide candidate ligands, consist-
ing of known endogenous plant metabolites, that can bind 
to KAI2 with an affinity that is much higher than for the 
only known exogenous ligand KAR. This finding opens up 
a new path to elucidate the mysterious ligand of KAI2, an 
important open question in plant biology with large potential 
applications in agriculture. Our work supports the hypoth-
esis of others that the STLs are a plant growth regulator 
involved in growth and development of sunflower. We show 
that this effect is likely due to the interaction with KAI2. 
Future experimental data should validate our computational 
work. Studies into metabolites, possibly sesquiterpenoid, 
with similar lactone ring structure in Arabidopsis and other 
flowering plants should further solve the long-standing 
enigma of the elusive KL in the rest of the plant kingdom.
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