87 research outputs found

    Fabrication and characterisation of short fibre reinforced elastomer composites for bending and twisting magnetic actuation

    Get PDF
    Polydimethylsiloxane (PDMS) films reinforced with short Nickel-coated Carbon Fibres (NiCF) were successfully fabricated, with the fibres aligned along different directions using an external magnetic field. The fibres were dispersed in the host matrix using sonication and mechanical mixing before being cured for 48 h in the magnetic field; thanks to the nickel functionalisation, the fibre orientation was achieved by a low intensity field (<0.2 T) which required an inexpensive experimental set-up. The main focus of this study was looking at the actuation potential of this magnetic composite material; successful actuation was achieved, showing its large displacement capability. The results confirm the presence of an instability controlled by the magnetic torque, as predicted by the introduced model. The composite films undergo a transition from a bending-only deformed configuration for the 0° fibre specimen, to a twisting-only configuration, achieved for fibres at 90°, whereas all the intermediate angles show both bending and twisting. This behaviour mirrors that which is used to propel a selection of marine mammals

    Optical characterisation of polymeric nanocomposites using tomographic, spectroscopic and Fraunhofer wavefront assessment

    Get PDF
    Polymers are often embedded with specific nanofillers such that the functional characteristics and properties of the resulting polymeric nanocomposite (PNC) are enhanced. The degree to which these enhancements can be achieved depends not only on the level of particle loading of nanofillers, but most importantly on the resulting dispersion profile achieved within the matrix. Agglomeration (often referred to as clustering) is a result of the mixing process and very much depends on the chemistry between the polymer and nanofiller. Depending on the PNC type, different mixing processes can be applied but the general consensus is that such processes are not repeatable themselves. Not only it is quite difficult to achieve the desired level of dispersion, but in addition there is a limited number of characterization tools that can be employed to routinely check the homogeneity achieved within a produced sample. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques are usually employed, but they are very time consuming, expensive, require special sample preparation and treatment, often produce results that are difficult to interpret and can only analyse very small areas of sample. This work reports on the adaptation and development and three optical techniques that are non-destructive, can accurately characterize the dispersion achieved as a result of the mixing process and can analyse larger material areas. The techniques reported are based on static and dynamic visible and infra-red light scattering

    Manufacturing carbon fibres from pitch and polyethylene blend precursors: a review

    Get PDF
    Carbon fibres are one of the newer, emerging materials with multiple engineering applications, from automobiles to space vehicles. Carbon fibres have high mechanical strength, are lighter than metals with better chemical resistance. There have been reports on the use of polyethylene and pitch precursors for the production of carbon fibres, but there are few reports of how these blends could be used for carbon fibre preparation. Bearing in mind the myriad of benefits that using carbon fibres could bring, this paper reviews recent advances published in the literature on how mesophase pitch and polyethylene could be suitable precursors for carbon fibres. It also provides an introduction to the development of precursor blends that allow the properties of carbon fibres to be tailored to specific applications, including processing techniques, fibre parameters, fibre properties and fibre structur

    Drawdown prepreg coating method using epoxy terminated butadiene nitrile rubber to improve fracture toughness of glass epoxy composites

    Get PDF
    Laminates of fibre-reinforced prepreg have excellent in-plane mechanical properties, but have inadequate performance in the through thickness direction. Here, we address this issue by application of epoxy-terminated butadiene nitrile (ETBN) liquid rubber between the prepreg laminae using an automatic draw bar coating technique. Test results reveal that by adding ETBN in small quantities in the range of 9.33–61.33 g/m2, the interlaminar critical energy release rates (GIc and GIIc) are improved by up to 122% in mode-I and 49% in mode-II. Moreover, this finding is further supported by the dynamic mechanical analysis thermograms that clearly indicate that coating has not altered the Tg of ETBN-coated samples. Scanning electron microscopic analysis of fracture surfaces showed that rubber particles formed micro cavitations in the epoxy, causing localised rubber rich regions. These resin-rich regions require more energy to fracture, resulting in increased toughness of the glass epoxy prepreg systems. </jats:p

    Optimizing the mechanical properties of cement composite boards reinforced with cellulose pulp and bamboo fibers for building applications in low-cost housing estates

    Get PDF
    Africa is the third-richest continent in the world in terms of bamboo species. Despite these laudable natural resources, most African countries still use asbestos cement board as one of their major building materials. This is chiefly due to the high cost of equipment and technologies associated with non-asbestos-fiber cement board production. The current research seeks to underscore the possibility of utilizing these massive continent resources for non-asbestos-fiber cement board production by employing the existing production process in the asbestos cement industries via an innovatively developed laboratory-simulated Hatschek process. Non-asbestos-fiber cement boards incorporating kraft and bamboo fibers were successfully produced in the laboratory using this innovative method based on Hatschek technology, with natural fibre addition in the range of 2–6 wt.%. Experimental results revealed that the Flexural strength and deflection of the board improved significantly, producing optimum values of 10.41 MPa and 2.0 mm, respectively for composite board reinforced with 10 wt.% and 6 wt.% of kraft pulp and bamboo fibers, respectively. The SEM morphology of the fractured surfaces revealed the mode of composite fracture as well as good interaction at the fiber–matrix interface. Overall, the mechanical properties of the developed composite boards satisfy the minimum requirements of relevant standards based on fiber cement flat sheets and can be employed for internal building applications in low-cost housing estates in developing countries. The outcome of this research indicates that the current industrial production process based on Hatschek technology can be employed for non-asbestos-fiber cement board production using the studied natural fiber.This research was funded by the Tertiary Education Trust Fund (TETFund), Nigeria, through the Academic Staff Training and Development (AST&D) scholarship grant number TETF/ES/ UNIV/ONDO STATE/TSAS/2019/Vol.1

    Enhanced oral bioavailability and hepatoprotective activity of thymoquinone in the form of phospholipidic nano-constructs

    Get PDF
    Background: The poor biopharmaceutical properties of thymoquinone (TQ) obstruct its development as a hepatoprotective agent. To surmount the delivery challenges of TQ, phospholipid nanoconstructs (PNCs) were constructed. Method: PNCs were constructed employing microemulsification technique and systematic optimization by three-factor three level Box-Behnken design. Result: Optimized PNC composition exhibited nano size (90%), controlled drug release pattern, and neutral surface charge (zeta potential of −0.65 mV). After oral administration of a single dose of PNC, it showed a relative bioavailability of 386.03% vis-à-vis plain TQ suspension. Further, TQ-loaded PNC demonstrated significant enhanced hepato-protective effect vis-à-vis pure TQ suspension and silymarin, as evidenced by reduction in the ALP, ALT, AST, bilirubin, and albumin level and ratified by histopathological analysis. Conclusion: TQ-loaded PNCs can be efficient nano-platforms for the management of hepatic disorders and promising drug delivery systems to enhance oral bioavailability of this hydrophobic molecule

    Manufacturing and characterization of regenerated cellulose/curcumin based sustainable composites fibers spun from environmentally benign solvents

    Get PDF
    We report a novel manufacturing method for bio renewable regenerated cellulose fibres modified with curcumin, a molecule is known for its medicinal properties. Ionic liquid namely 1-Ethyl 3-Methyl Imidazolium diethyl phosphate (emim DEP) was found to be capable of dissolving cellulose as well as curcumin. Regenerated cellulose/curcumin composites fibres with curcumin concentration ranging from 1 to 10 wt% were manufactured using dry jet wet fibres spinning process using three different winding speeds. All the cellulose and curcumin composite fibres showed distinct yellow colour imparted by curcumin. The resultant fibres were characterised using scanning electron microscopy (SEM), infrared spectroscopy, mechanical testing, and X-Ray diffraction studies. Scanning electron microscopy of cellulose/curcumin fibres cross-section did not show curcumin aggregates in cellulose fibres indicating uniform dispersion of curcumin in cellulose matrix. The cellulose chain alignment in cellulose/curcumin composite fibres resulted in tensile strength ranging from 223 to 336 MPa and Young’s modulus ranging from 13 to 14.9 GPa. The mechanical properties of cellulose/curcumin composite fibres thus obtained are better than some of the commercially available regenerated cellulose viscose fibres. The wide-angle X-ray diffraction analysis of cellulose/curcumin composite fibres showed good alignment of cellulose chains along the fibre axis. Thus, our findings are a major step in manufacturing strong cellulose fibres with a pharmacologically potent drug curcumin which in future could be used for medicinal, cosmetic and food packaging applications

    Superbase ionic liquids for effective cellulose processing from dissolution to carbonisation

    Get PDF
    This is the author accepted manuscript. The final version is available from Royal Society of Chemistry via the DOI in this recordA range of superbase derived ionic liquids (SILs) was synthesised and characterised. Their ability to dissolve cellulose and the characteristics of the produced fibres were correlated to their specific structural and solvent properties. 17 ionic liquids (ILs) (including 9 novel) were analysed and six ILs were selected to produce fibres: 1-ethyl-3-methylimidazolium acetate [C2C1im][OAc], 1-ethyl-3-methylimidazolium diethyl phosphate [C2C1im][DEP] and the SILs 1-ethyl-1,8-diazabicyclo[5.4.0]undec-7-enium diethylphosphate [DBUEt][DEP], 1,8-diazabicyclo[5.4.0]undec-7-enium acetate [DBUH][OAc], 1,5-diazabicyclo[4.3.0]non-5-enium acetate [DBNH][OAc] and 1-ethyl-1,5-diazabicyclo[4.3.0]non-5-enium diethylphsophate [DBNEt][DEP]. The mechanical properties of these fibres were investigated. The obtained fibres were then carbonised to explore possible application as carbon fibre precursors. The fibres obtained using a mixture of 1,5-diazabicyclo[4.3.0]non-5-enium based SILs with acetate and hexanoate anions (9 : 1), [DBNH][OAc][Hex], showed a promising combination of strength, stiffness and strain at failure values for applications in textiles and fibre reinforcement in renewable composites. Using Raman spectroscopy it is demonstrated that these fibres exhibit a relatively high degree of structural order, with fewer defects than the other materials. On the other hand, analogous fibres based on imidazolium cation with acetate and hexanoate anions (9 : 1), [C2C1im][OAc][Hex] showed a decline in the quality of the produced fibres compared to the fibres produced from [C2C1im][OAc], [C2C1im][DEP] or [DBNH][OAc][Hex].We would like to thank the EPSRC grant number EP/L017679/01 for financial support (AERO RB1717)
    • …
    corecore