399 research outputs found

    Against the new Cartesian Circle

    Get PDF
    In two recent papers, Michael Della Rocca accuses Descartes of reasoning circularly in the Fourth Meditation. This alleged new circle is distinct from, and more vicious than, the traditional Cartesian Circle arising in the Third Meditation. We explain Della Rocca’s reasons for this accusation, showing that his argument is invalid

    Using Incongruent Equilibrium Hydration Reactions to Model Latter-Stage Crystallization in Plutons: Examples from the Bell Island Tonalite, Alaska

    Get PDF
    Models using hydration crystallization reactions (the reverse of dehydration melting reactions such as amph + qtz = px + melt) for the Bell Island pluton define incongruent equilibrium crystallization paths from hydrous + melt + pyroxene + Fe-Ti oxides + calcic andesine (30%-50% solid) to a solid tonalite consisting mostly of hornblende, lower temperature end of Bowen\u27s discontinuous reaction series and apply it to natural samples. Hydration crystallization provides an alternative to crystal fractionation for explaining variations in pluton chemistry, especially the compositions of late plutonic melts. Another characteristic of hydration crystallization is that the reactions have the potential to buffer the water content of the melt during crystallization. Two closed-system models, representing different sets of starting conditions and phases, are considered, based on least squares, mass-balance calculations of reactions and constrained by the petrography of the rocks. Model 1 starts with an average modified Bell Island leucotonalite melt coexisting with two pyroxenes, two Fe-Ti oxides, and plagioclase at the beginning of hydration crystallization. The starting assemblage of model 2 omits orthopyroxene and magnetite, includes amphibole, and uses a calculated melt composition. Both models generally predict, via different series of hydration crystallization reactions, the observed subsolidus mode. Model 2, however, is preferred based on petrographic observations of the Bell Island rocks, specifically the lack of magnetite and orthopyroxene, as well as certain textural features

    The Fourth Meditation and Cartesian Circles

    Get PDF

    First L-band Interferometric Observations of a Young Stellar Object: Probing the Circumstellar Environment of MWC 419

    Get PDF
    We present spatially-resolved K- and L-band spectra (at spectral resolution R = 230 and R = 60, respectively) of MWC 419, a Herbig Ae/Be star. The data were obtained simultaneously with a new configuration of the 85-m baseline Keck Interferometer. Our observations are sensitive to the radial distribution of temperature in the inner region of the disk of MWC 419. We fit the visibility data with both simple geometric and more physical disk models. The geometric models (uniform disk and Gaussian) show that the apparent size increases linearly with wavelength in the 2-4 microns wavelength region, suggesting that the disk is extended with a temperature gradient. A model having a power-law temperature gradient with radius simultaneously fits our interferometric measurements and the spectral energy distribution data from the literature. The slope of the power-law is close to that expected from an optically thick disk. Our spectrally dispersed interferometric measurements include the Br gamma emission line. The measured disk size at and around Br gamma suggests that emitting hydrogen gas is located inside (or within the inner regions) of the dust disk.Comment: Accepted for publication in Ap

    First astronomical unit scale image of the GW Ori triple. Direct detection of a new stellar companion

    Get PDF
    Young and close multiple systems are unique laboratories to probe the initial dynamical interactions between forming stellar systems and their dust and gas environment. Their study is a key building block to understanding the high frequency of main-sequence multiple systems. However, the number of detected spectroscopic young multiple systems that allow dynamical studies is limited. GW Orionis is one such system. It is one of the brightest young T Tauri stars and is surrounded by a massive disk. Our goal is to probe the GW Orionis multiplicity at angular scales at which we can spatially resolve the orbit. We used the IOTA/IONIC3 interferometer to probe the environment of GW Orionis with an astronomical unit resolution in 2003, 2004, and 2005. By measuring squared visibilities and closure phases with a good UV coverage we carry out the first image reconstruction of GW Ori from infrared long-baseline interferometry. We obtain the first infrared image of a T Tauri multiple system with astronomical unit resolution. We show that GW Orionis is a triple system, resolve for the first time the previously known inner pair (separation ρ\rho\sim1.4 AU) and reveal a new more distant component (GW Ori C) with a projected separation of \sim8 AU with direct evidence of motion. Furthermore, the nearly equal (2:1) H-band flux ratio of the inner components suggests that either GW Ori B is undergoing a preferential accretion event that increases its disk luminosity or that the estimate of the masses has to be revisited in favour of a more equal mass-ratio system that is seen at lower inclination. Accretion disk models of GW Ori will need to be completely reconsidered because of this outer companion C and the unexpected brightness of companion B.Comment: 5 pages, 9 figures, accepted Astronomy and Astrophysics Letters. 201

    Occupational correlates of smoking among urban transit operators: A prospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Workers in blue-collar and service occupations smoke at higher rates than workers in white-collar and professional occupations. Occupational stress may explain some of the occupational class differences in smoking and quitting behavior. The purpose of this study is to investigate the contribution of occupational factors to smoking behavior over a ten year period among a multiethnic cohort of urban transit operators, while accounting for demographic factors and alcohol.</p> <p>Methods</p> <p>The sample consists of 654 San Francisco Municipal Railway (MUNI) transit operators who participated in two occupational health studies and biennial medical examinations during 1983–85 and 1993–95. Workers who had initiated, increased, or maintained their smoking over the ten year period were compared to workers who remained non-smokers. Occupational factors included self-rated frequency of job problems (e.g., difficulties with equipment, passengers, traffic), job burnout (i.e., the emotional exhaustion subscale of the Maslach Burnout Inventory), time needed to unwind after work, and years employed as a transit operator. A series of logistic regression models were developed to estimate the contribution of occupational factors to smoking behavior over time.</p> <p>Results</p> <p>Approximately 35% of the workers increased, initiated, or maintained their smoking over the ten-year period. Frequency of job problems was significantly associated with likelihood of smoking increase, initiation, or maintenance (OR = 1.30; 95% CI 1.09, 1.55). Black operators were significantly more likely to have smoked over the ten-year period compared to operators in other racial/ethnic groups.</p> <p>Conclusion</p> <p>Understanding the role of work-related stress vis-à-vis smoking behavior is of critical importance for crafting workplace smoking prevention and cessation interventions that are applicable to blue-collar work settings, and for developing policies that mitigate occupational stress.</p

    ASTRA: ASTrometry and phase-Referencing Astronomy on the Keck interferometer

    Get PDF
    ASTRA (ASTrometric and phase-Referencing Astronomy) is an upgrade to the existing Keck Interferometer which aims at providing new self-phase referencing (high spectral resolution observation of YSOs), dual-field phase referencing (sensitive AGN observations), and astrometric (known exoplanetary systems characterization and galactic center general relativity in strong field regime) capabilities. With the first high spectral resolution mode now offered to the community, this contribution focuses on the progress of the dual field and astrometric modes.Comment: 10 pages, 6 figures, 2 tables, SPIE 201

    Genomic differentiation during speciation-with-gene-flow: Comparing geographic and host-related variation in divergent life history adaptation in rhagoletis pomonella

    Get PDF
    A major goal of evolutionary biology is to understand how variation within populations gets partitioned into differences between reproductively isolated species. Here, we examine the degree to which diapause life history timing, a critical adaptation promoting population divergence, explains geographic and host-related genetic variation in ancestral hawthorn and recently derived apple-infesting races of Rhagoletis pomonella. Our strategy involved combining experiments on two different aspects of diapause (initial diapause intensity and adult eclosion time) with a geographic survey of genomic variation across four sites where apple and hawthorn flies co-occur from north to south in the Midwestern USA. The results demonstrated that the majority of the genome showing significant geographic and host-related variation can be accounted for by initial diapause intensity and eclosion time. Local genomic differences between sympatric apple and hawthorn flies were subsumed within broader geographic clines; allele frequency differences within the races across the Midwest were two to three-fold greater than those between the races in sympatry. As a result, sympatric apple and hawthorn populations displayed more limited genomic clustering compared to geographic populations within the races. The findings suggest that with reduced gene flow and increased selection on diapause equivalent to that seen between geographic sites, the host races may be recognized as different genotypic entities in sympatry, and perhaps species, a hypothesis requiring future genomic analysis of related sibling species to R. pomonella to test. Our findings concerning the way selection and geography interplay could be of broad significance for many cases of earlier stages of divergence-with-gene flow, including (1) where only modest increases in geographic isolation and the strength of selection may greatly impact genetic coupling and (2) the dynamics of how spatial and temporal standing variation is extracted by selection to generate differences between new and discrete units of biodiversity

    Keck Interferometer Nuller Data Reduction and On-Sky Performance

    Get PDF
    We describe the Keck Interferometer nuller theory of operation, data reduction, and on-sky performance, particularly as it applies to the nuller exozodiacal dust key science program that was carried out between 2008 February and 2009 January. We review the nuller implementation, including the detailed phasor processing involved in implementing the null-peak mode used for science data and the sequencing used for science observing. We then describe the Level 1 reduction to convert the instrument telemetry streams to raw null leakages, and the Level 2 reduction to provide calibrated null leakages. The Level 1 reduction uses conservative, primarily linear processing, implemented consistently for science and calibrator stars. The Level 2 processing is more flexible, and uses diameters for the calibrator stars measured contemporaneously with the interferometer’s K-band cophasing system in order to provide the requisite accuracy. Using the key science data set of 462 total scans, we assess the instrument performance for sensitivity and systematic error. At 2.0 Jy we achieve a photometrically-limited null leakage uncertainty of 0.25% rms per 10 minutes of integration time in our broadband channel. From analysis of the Level 2 reductions, we estimate a systematic noise floor for bright stars of ~0.2% rms null leakage uncertainty per observing cluster in the broadband channel. A similar analysis is performed for the narrowband channels. We also provide additional information needed for science reduction, including details on the instrument beam pattern and the basic astrophysical response of the system, and references to the data reduction and modeling tools
    corecore