14 research outputs found

    A Biomechanical Comparison of Intralaminar C7 Screw Constructs with and without Offset Connector Used for C6-7 Cervical Spine Immobilization : A Finite Element Study

    Get PDF
    Objective: The offset connector can allow medial and lateral variability and facilitate intralaminar screw incorporation into the construct. The aim of this study was to compare the biomechanical characteristics of C7 intralaminar screw constructs with and without offset connector using a three dimensional finite element model of a C6-7 cervical spine segment. Methods: Finite element models representing C7 intralaminar screw constructs with and without the offset connector were developed. Range of motion (ROM) and maximum von Mises stresses in the vertebra for the two techniques were compared under pure moments in flexion, extension, lateral bending and axial rotation. Results: ROM for intralaminar screw construct with offset connector was less than the construct without the offset connector in the three principal directions. The maximum von Misses stress was observed in the C7 vertebra around the pedicle in both constructs. Maximum von Mises stress in the construct without offset connector was found to be 12-30% higher than the corresponding stresses in the construct with offset connector in the three principal directions. Conclusion: This study demonstrated that the intralaminar screw fixation with offset connector is better than the construct without offset connector in terms of biomechanical stability. Construct with the offset connector reduces the ROM of C6-7 segment more significantly compared to the construct without the offset connector and causes lower stresses around the C7 pedicle-vertebral body complex

    Deep learning of the retina enables phenome- and genome-wide analyses of the microvasculature.

    Get PDF
    Background: The microvasculature, the smallest blood vessels in the body, has key roles in maintenance of organ health as well as tumorigenesis. The retinal fundus is a window for human in vivo non-invasive assessment of the microvasculature. Large-scale complementary machine learning-based assessment of the retinal vasculature with phenome-wide and genome-wide analyses may yield new insights into human health and disease. Methods: We utilized 97,895 retinal fundus images from 54,813 UK Biobank participants. Using convolutional neural networks to segment the retinal microvasculature, we calculated fractal dimension (FD) as a measure of vascular branching complexity, and vascular density. We associated these indices with 1,866 incident ICD-based conditions (median 10y follow-up) and 88 quantitative traits, adjusting for age, sex, smoking status, and ethnicity. Results: Low retinal vascular FD and density were significantly associated with higher risks for incident mortality, hypertension, congestive heart failure, renal failure, type 2 diabetes, sleep apnea, anemia, and multiple ocular conditions, as well as corresponding quantitative traits. Genome-wide association of vascular FD and density identified 7 and 13 novel loci respectively, which were enriched for pathways linked to angiogenesis (e.g., VEGF, PDGFR, angiopoietin, and WNT signaling pathways) and inflammation (e.g., interleukin, cytokine signaling). Conclusions: Our results indicate that the retinal vasculature may serve as a biomarker for future cardiometabolic and ocular disease and provide insights on genes and biological pathways influencing microvascular indices. Moreover, such a framework highlights how deep learning of images can quantify an interpretable phenotype for integration with electronic health records, biomarker, and genetic data to inform risk prediction and risk modification

    Initiation and progression of mechanical damage in the intervertebral disc under cyclic loading using continuum damage mechanics methodology: a finite element study

    No full text
    It is difficult to study the breakdown of disc tissue over several years of exposure to bending and lifting by experimental methods. There is also no finite element model that elucidates the failure mechanism due to repetitive loading of the lumbar motion segment. The aim of this study was to refine an already validated poro-elastic finite element model of lumbar motion segment to investigate the initiation and progression of mechanical damage in the disc under simple and complex cyclic loading conditions. Continuum damage mechanics methodology was incorporated into the finite element model to track the damage accumulation in the annulus in response to the repetitive loading. The analyses showed that the damage initiated at the posterior inner annulus adjacent to the endplates and propagated outwards towards its periphery under all loading conditions simulated. The damage accumulated preferentially in the posterior region of the annulus. The analyses also showed that the disc failure is unlikely to happen with repetitive bending in the absence of compressive load. Compressive cyclic loading with low peak load magnitude also did not create the failure of the disc. The finite element model results were consistent with the experimental and clinical observations in terms of the region of failure, magnitude of applied loads and the number of load cycles survived.</p

    Damage accumulation location under cyclic loading in the lumbar disc shifts from inner annulus lamellae to peripheral annulus with increasing disc degeneration

    No full text
    It is difficult to study the breakdown of lumbar disc tissue over several years of exposure to bending and lifting by experimental methods. In our earlier published study we have shown how a finite element model of a healthy lumbar motion segment was used to predict the damage accumulation location and number of cyclic to failure under different loading conditions. The aim of the current study was to extend the continuum damage mechanics formulation to the degenerated discs and investigate the initiation and progression of mechanical damage. Healthy disc model was modified to represent degenerative discs (Thompson grade III and IV) by incorporating both geometrical and biochemical changes due to degeneration. Analyses predicted decrease in the number of cycles to failure with increasing severity of disc degeneration. The study showed that the damage initiated at the posterior inner annulus adjacent to the endplates and propagated outwards towards its periphery in healthy and grade III degenerated discs. The damage accumulated preferentially in the posterior region of the annulus. However in grade IV degenerated disc damage initiated at the posterior outer periphery of the annulus and propagated circumferentially. The finite element model predictions were consistent with the infrequent occurrence of rim lesions at early age but a much higher incidence in severely degenerated discs. </p

    A Biomechanical Comparison of Three Different Posterior Fixation Constructs Used for C6–C7 Cervical Spine Immobilization: A Finite Element Study

    Get PDF
    The intralaminar screw construct has been recently introduced in C6–C7 fixation. The aim of the study is to compare the stability afforded by three different C7 posterior fixation techniques using a three-dimensional fnite element model of a C6–C7 cervical spine motion segment. Finite element models representing three different cervical anchor types (C7 intralaminar screw, C7 lateral mass screw, and C7 pedicle screw) were developed. Range of motion (ROM) and maximum von Mises stresses in the vertebra for the three screw techniques were compared under pure moments in fexion, extension, lateral bending, and axial rotation. ROM for pedicle screw construct was less than the lateral mass screw construct and intrala-minar screw construct in the three principal directions. The maximum von Misses stress was observed in the C7 vertebra around the pedicle in all the three screw constructs. Maximum von Mises stress in pedicle screw construct was less than the lateral mass screw construct and intralaminar screw construct in all loading modes. This study demonstrated that the pedicle screw fixation is the strongest instrumentation method for C6–C7 fixation. Pedicle screw fixation resulted in least stresses around the C7 pedicle-vertebral body complex. However, if pedicle fixation is not favorable, the laminar screw can be a better option compared to the lateral mass screw because the stress around the pedicle-vertebral body complex and ROM predicted for laminar screw construct was smaller than those of lateral mass screw construct

    Thermal characterization of ceramic tapes using photoacoustic effect

    No full text
    Thermal characterization of alumina–zirconia and zirconia ceramic tapes using a photoacoustic technique is presented. A transmission-mode geometry is employed for the measurement of thermal diffusivity while a reflection-mode geometry is used for the measurement of thermal effusivity. In both these geometries, the same open photoacoustic cell is used. From the measured values of thermal diffusivity and thermal effusivity, the thermal conductivity value has also been evaluated.Cochin University of Science and Technology & Centre for Materials for Electronics Technolog

    Initiation and progression of mechanical damage in the intervertebral disc under cyclic loading using continuum damage mechanics methodology: A finite element study

    No full text
    It is difficult to study the breakdown of disc tissue over several years of exposure to bending and lifting by experimental methods. There is also no finite element model that elucidates the failure mechanism due to repetitive loading of the lumbar motion segment. The aim of this study was to refine an already validated poro-elastic finite element model of lumbar motion segment to investigate the initiation and progression of mechanical damage in the disc under simple and complex cyclic loading conditions. Continuum damage mechanics methodology was incorporated into the finite element model to track the damage accumulation in the annulus in response to the repetitive loading. The analyses showed that the damage initiated at the posterior inner annulus adjacent to the endplates and propagated outwards towards its periphery under all loading conditions simulated. The damage accumulated preferentially in the posterior region of the annulus. The analyses also showed that the disc failure is unlikely to happen with repetitive bending in the absence of compressive load. Compressive cyclic loading with low peak load magnitude also did not create the failure of the disc. The finite element model results were consistent with the experimental and clinical observations in terms of the region of failure, magnitude of applied loads and the number of load cycles survived
    corecore