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BACKGROUND: The microvasculature, the smallest blood vessels in the body, has key roles in maintenance of organ health and 
tumorigenesis. The retinal fundus is a window for human in vivo noninvasive assessment of the microvasculature. Large-
scale complementary machine learning-based assessment of the retinal vasculature with phenome-wide and genome-wide 
analyses may yield new insights into human health and disease.

METHODS: We used 97 895 retinal fundus images from 54 813 UK Biobank participants. Using convolutional neural 
networks to segment the retinal microvasculature, we calculated vascular density and fractal dimension as a measure 
of vascular branching complexity. We associated these indices with 1866 incident International Classification of 
Diseases–based conditions (median 10-year follow-up) and 88 quantitative traits, adjusting for age, sex, smoking 
status, and ethnicity.

RESULTS: Low retinal vascular fractal dimension and density were significantly associated with higher risks for incident 
mortality, hypertension, congestive heart failure, renal failure, type 2 diabetes, sleep apnea, anemia, and multiple ocular 
conditions, as well as corresponding quantitative traits. Genome-wide association of vascular fractal dimension and density 
identified 7 and 13 novel loci, respectively, that were enriched for pathways linked to angiogenesis (eg, vascular endothelial 
growth factor, platelet-derived growth factor receptor, angiopoietin, and WNT signaling pathways) and inflammation (eg, 
interleukin, cytokine signaling).

CONCLUSIONS: Our results indicate that the retinal vasculature may serve as a biomarker for future cardiometabolic and 
ocular disease and provide insights into genes and biological pathways influencing microvascular indices. Moreover, such a 
framework highlights how deep learning of images can quantify an interpretable phenotype for integration with electronic 
health record, biomarker, and genetic data to inform risk prediction and risk modification.
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The microvasculature influences health and disease 
throughout all organ systems. Dysregulation of the 
microvasculature contributes to many ocular and sys-

temic conditions.1–5 The formation of blood vessels is con-
trolled by 2 processes: vasculogenesis and angiogenesis. 
Vasculogenesis involves the differentiation of endothelial 
cells from mesodermal precursors and is under control of 
many signaling cues, including the WNT/B-catenin6 and 
Notch7 signaling pathways. Angiogenesis then follows a 
series of sequential steps for vascular branching and is 
mediated by growth factors and cytokines, including vas-
cular endothelial growth factor (VEGF), fibroblast growth 
factor, tumor necrosis factor-α, transforming growth 
factor-β, platelet-derived growth factor, and angiopoietins, 
as well as intracellular signaling pathways incorporating 
Rho GTPases, protein kinase C, and Notch signaling.8 The 
microvasculature is also of significance in cancer, wherein 
angiogenesis is necessary for tumor growth and enables 
metastasis.9 Antiangiogenic agents such as anti-VEGF 
antibodies are key aspects of cancer therapy, whereby the 
actions of VEGF, which is induced by the tumor microen-
vironment (eg, hypoxia) and stimulates abnormal neovas-
cularization, are inhibited.9 The same anti-VEGF therapies 
that treat cancers are also a mainstay of treatment for 
neovascularization and macular edema secondary to neo-
vascular age-related macular degeneration and prolifera-
tive diabetic retinopathy, respectively.10,11

Given the anatomic and physiological similarities 
between the retinal microvasculature and that of other 
organs, fundus photographs of the retina allow noninva-
sive in vivo assessment of the microvasculature. Current 
computerized approaches of assessing the microvascula-
ture include retinal vessel caliber estimation of arterioles 
and venules and their ratio.12 Smaller studies have shown 
that smaller retinal vascular caliber and smaller arte-
riolar/venular ratio are linked to antecedent and future 
hypertension.13–17 Furthermore, retinal vascular caliber is 
associated with incident stroke.18–20 However, associa-
tions with coronary artery disease and renal disease are 
less consistent.21–23 Current approaches are now able to 
extract geometric and branching patterns of the retinal 
microvasculature such as retinal vascular tortuosity,24 
fractal dimension (FD),25–31 and vascular density.32–36 
Such indices are more consistently linked to stroke, cor-
onary artery disease, and renal disease in small cross-
sectional analyses of ≈1000 individuals.37-41 The extent 
to which retinal microvasculature geometric alterations 
may be linked to incident phenome-wide consequences 
is poorly understood. In addition, complementary genetic 
discovery analyses of the retinal microvasculature offer 
the prospects of identifying new therapeutic targets for 
both ocular and nonocular conditions.

Here, we leveraged deep learning for automated 
image quality control and segmentation of the micro-
vasculature across >100 000 retinal fundus photo-
graphs. We subsequently quantified 2 vascular features: 

Clinical Perspective

What Is New?
• We leveraged deep learning to quantify geometric 

microvasculature indices across >100 000 retinal 
fundus photographs and used these indices toward 
characterizing phenome-wide clinical associations 
and genomic risk factors.

• Epidemiologically, low microvascular density and 
fractal dimension (a measure of vascular branch-
ing complexity) were associated with higher risk 
of future mortality and cardiometabolic and ocular 
disease; genetically, these microvascular indices 
were enriched in pathways related to angiogen-
esis and inflammation.

• Genetically higher risk for hypertension and diabe-
tes was associated with lower microvascular den-
sity; in turn, genetically lower microvascular density 
was independently associated with higher risk of 
retinal detachments and skin cancer.

What Are the Clinical Implications?
• We illustrate the potential for deep learning of the 

retina to understand the microvasculature among 
humans in vivo, with wide applications across 
diseases.

• Retinal microvascular indices may be clinically 
useful as biomarkers of cardiometabolic disease 
severity and for risk prediction of ocular condi-
tions; however, more research is required to 
assess clinical efficacy.

• Genetic contributors to microvascular indices, 
including those influencing angiogenesis and 
inflammation, may provide insight into therapeutic 
targets for microvascular disease in the eye, can-
cer, and diseases in other tissues.

Nonstandard Abbreviations and Acronyms

CHASE  Child Heart and Health Study in 
England

DBP diastolic blood pressure
FD fractal dimension
GWAS genome-wide association study
HbA1c hemoglobin A1c
HR hazard ratio
MITF melanocyte-inducing transcription factor
OR odds ratio
PheWAS phenome-wide association study
PoPS Polygenic Priority Score
PRS polygenic risk score
SBP systolic blood pressure
VEGF vascular endothelial growth factor
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branching complexity as measured with FD42 and vas-
cular density, defined as the total number of segmented 
pixels given a consistent field of view and fixed pixel 
dimensions across all individuals. We then performed a 
phenome-wide association study (PheWAS) for FD and 
vascular density across 1866 phenotypes and 88 quan-
titative clinical traits and biomarkers. Secondarily, we 
performed genome-wide association studies (GWASs) 
for FD and vascular density across common variants in 
the genome, as well as a rare variant association study 
across rare predicted disruptive variants in the genome. 
We leveraged these results to investigate causal rela-
tionships through mendelian randomization. Overall, our 
study highlights how deep learning enables a large-
scale, unbiased connection between the retinal micro-
vasculature and clinical outcomes (Figure 1A).

METHODS
UK Biobank Cohort, Retinal Fundus 
Imaging, and Quality Control
The UK Biobank is a population-based cohort of ≈500 000 par-
ticipants recruited from 2006 to 2010 with existing genomic 
and longitudinal phenotypic data and median 10-year follow-
up.43 Baseline assessments were conducted at 22 assessment 

centers across the United Kingdom with sample collections, 
including blood-derived DNA. Retinal fundus imaging was per-
formed at enrollment with the TOPCON 3D OCT 1000 Mk2 
instrument, which takes a 3-dimensional scan and photograph 
of the retina with a magnified photograph of the fundus. Of the 
67 339 genotyped individuals with retinal imaging available at 
enrollment, we analyzed 97 895 images across 54 813 partici-
pants after applying the quality control filters as indicated below. 
Use of the data was approved by the Massachusetts General 
Hospital Institutional Review Board (protocol 2013P001840) 
and facilitated through UK Biobank Application 7089. Details 
on UK Biobank array genotyping,43 whole-exome sequenc-
ing,44,45 genomic quality control,46–48 sample exclusion criteria, 
and poor-quality fundus image removal49,50 are provided in the 
Supplemental Methods.

Deep Learning for Vessel Segmentation
An overview of previous methods for retinal vessel segmenta-
tion42,51–56 is provided in the Supplemental Methods. Here, we 
developed a deep learning ensemble model of U-Nets57 on the 
Google Cloud’s artificial intelligence platform to automatically 
segment vasculature from retinal fundus photographs. The model 
was developed from 90 photographs and associated hand-drawn 
segmentations from 3 publicly available data sets: (1) Digital 
Retinal Images for Vessel Extraction, photographs from a diabetic 
retinopathy screening program in the Netherlands of subjects 25 
to 90 years of age; (2) fundus photographs with hand-labeled 

Figure 1. Study schematic and vascular features.
A, Here, we first used deep learning toward large-scale automated removal of low-quality images, followed by vessel segmentation. Next, 
using the vascular segmentations, we quantified 2 vascular indices: branching complexity as measured by fractal dimension (FD) and vascular 
density. Last, phenome- and genome-wide association analyses of retinal FD and vascular density were performed to discover phenotypes 
associated with the microvasculature and genotypes influencing these vascular indices. B, Significant Spearman correlations were observed 
between FD and vascular density of the right vs left eyes, with right eyes having significantly higher FD and vascular density compared with 
left eyes. Blue line reflects best-fit line; dotted purple line reflects the unity line (x=y). C, Relationship of FD and vascular density (averaged 
across right and left eyes) with age. 
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vessel segmentations from the Structured Analysis of the Retina 
database58 extracted from clinical visits to the Shiley Eye Center 
at the University of California, San Diego; and (3) CHASE (Child 
Heart and Health Study in England),59 retinal fundus photographs 
of 9- and 10-year-old children of different ethnic origin from 
England. Seventy-five images were used for training and hyper-
parameter tuning of the model, and the remaining 15 images 
were used as an independent validation data set (with the 3 data 
sets proportionally represented). A second external validation 
data set consisted of 143 images from the Automated Retinal 
Image Analysis database. These were retinal fundus photos from 
adults with age-related macular degeneration, adults with diabetic 
retinopathy, and healthy control subjects collected between 2004 
and 2006 from the St. Paul’s Eye Unit in Liverpool, UK.60 Details 
on model training and FD42,61 and vascular density calculation are 
provided in the Supplemental Methods.

PheWAS Analyses 
Four sets of PheWAS analyses were performed, corresponding 
to association of retinal vascular FD and vascular density with 
(1) prevalent phenotypes at enrollment,62,63 (2) incident pheno-
types developed after enrollment,62,63 (3) quantitative systemic 
biomarkers, and (4) quantitative ocular traits,46–48 as detailed in 
the Supplemental Methods including the statistical analysis. All 
models were adjusted for age, age squared, sex, smoking sta-
tus (current/previous/never smoker), and ethnicity (data field 
21000). For each analysis, statistical significance was defined 
with false discovery rate–corrected P<0.05. Sensitivity analy-
ses additionally adjusting for hypertension, type 2 diabetes, 
myopia, and spherical equivalence64 were performed.

Genomic Analyses
GWASs were performed with Hail-0.2 software on the Google 
Cloud among individuals with retinal fundus imaging at enroll-
ment, as done previously. A linear regression model was used 
for analysis, with adjustment for age, age squared, sex, ever 
smoking, the first 10 principal components of genetic ancestry, 
and genotyping array. Secondary in silico analyses,65–67 poly-
genic risk score (PRS) PheWAS analyses, mendelian random-
ization,47,68 and rare variant burden analyses69–71 are detailed in 
the Supplemental Methods, including the statistical analysis. 
The full retinal vascular FD and density GWAS summary sta-
tistics are available through the Common Metabolic Disease 
Knowledge Portal (https://hugeamp.org/downloads.html).

Code Availability
Deep learning methods for vessel segmentation and quantifi-
cation are freely available through GitHub (https://github.com/
vineet1992/Retina-Seg). Code for all other computations is 
available on reasonable request to the corresponding authors.

RESULTS
Deep Learning for Automated Image Quality 
Control and Vessel Segmentation
We first performed automated image outlier detection by 
developing a convolutional neural network trained on a 

sample of 794 retinal fundus photographs from the UK 
Biobank. This model achieved a sensitivity of 97.4% and 
a specificity of 100.0% for detecting poor-quality im-
ages in the independent testing set of 206 fundus pho-
tographs. We then applied this model across 134 653 
photographs acquired at the UK Biobank enrollment 
visit across 67 339 individuals. This resulted in removal 
of 26% of the original images with 99 736 images from 
55 603 participants remaining, similar to filtering rates 
from other studies.49,50 Further details on sensitivity anal-
yses for poor-quality image removal are provided in the 
Supplemental Methods (Table S1).

To implement large-scale vessel segmentation, we 
developed an ensemble of deep convolutional neu-
ral networks as detailed in the Methods section. On 
the 15-image testing data set, this ensemble model 
achieved an 82.1% Dice similarity coefficient (a mea-
sure of spatial overlap accuracy), 97.4% pixel-wise accu-
racy, 99.1% area under the curve, and correlation of 
0.92 for FD and 0.88 for vascular density with the true 
hand-labeled vessel segmentations on the independent 
testing data set (Figure S1). These results were compa-
rable or superior to results of other deep learning-based 
approaches.52 On the Automated Retinal Image Analy-
sis external validation data set, the model achieved an 
accuracy score of 95.6% and an area under the curve of 
97.4% higher than state-of-the-art image processing–
based approaches (Figure S2).51,53–56,72,73 Although our 
model had a lower Dice coefficient in the Automated 
Retinal Image Analysis data set, (71.1%), FD and vessel 
density correlations remained high (ie, 0.93 and 0.82, 
respectively). Further sample quality control filters were 
implemented for analysis to filter to individuals con-
senting to genetic analysis with genotypic-phenotypic 
sex concordance, resulting in a total of 97 895 images 
across 54 813 participants used in the analyses.

Baseline Characteristics
Baseline characteristics across the 54 813 analyzed 
individuals (mean age, 56 years [SD 8 years]; female, 
30 015 [55%]; ever smokers, 23 987 [44%]) are pre-
sented in Table S2 and are discussed in the Supplemen-
tal Results.

Retinal Vascular Density and FD Quantification
The calculated retinal vascular density and FD, al-
though highly correlated between right and left eyes 
(FD: RSpearman=0.57, P<1×10−300; density: RSpearman=0.75, 
P<1×10−300), were both consistently higher in right eyes 
compared with left eyes (paired t test for FD: mean dif-
ference, 0.0065, P=2×10−264; density: mean difference, 
0.0031, P<1×10−300; Figure 1B). This relationship was 
independent of handedness and was maintained across 
right-handed, left-handed, and ambidextrous individuals 
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(Figure S3). Retinal vascular density and FD across both 
eyes were strongly correlated (right eye: RSpearman=0.77, 
P<1×10−300; left eye: RSpearman=0.78, P<1×10−300). Uni-
variable and multivariable associations with vascular FD 
and density (Figure 1C, Figure S4, and Tables S3 and 
S4) are discussed in the Supplemental Results.

Phenome-Wide Association Study
We first associated retinal vascular FD and density with 
incident mortality, identifying that the incidence of mor-
tality is strongest among individuals with low FD and 
density who have either type 2 diabetes or hyperten-
sion (Figure 2). Low FD, defined as 2 SDs below the 
mean, was more strongly associated with incident mor-
tality among those with prevalent type 2 diabetes or 
hypertension (hazard ratio [HR], 1.83 [95% CI ,1.46–
2.3]; P=2.01×10−7) than those without either condi-
tion (HR, 1.29 [95% CI, 1.03–1.62]; P=0.03, Pheterogene-

ity=1.36×10−20) after adjustment for age, age squared, 
sex, smoking status, and ethnicity. Similarly, a 2-SD lower 
vascular density was associated with incident mortality 
(HR, 1.83 [95% CI, 1.39–2.42]; P=2.1×10−5) among 
those with prevalent type 2 diabetes or hypertension, 
but no significant association was detected among those 
without either condition (HR, 1.30 [95% CI, 0.976–1.72]; 
P=0.072; Pheterogeneity=9.95×10−19) adjusted for age, age 
squared, sex, smoking status, and ethnicity (Figure 2).

Next, phenome-wide association was performed 
across all 1866 hierarchical phenotypes (ie, phecodes) 
defined from the Phecode Map 1.2 International Classifi-
cation of Diseases-9 and -10 groupings62 (Supplemental 
Methods). Analysis was performed separately between 
retinal vascular FD and density across all prevalent 
phecodes diagnosed before fundus image acquisition 
(Figure S5 and Table S5), incident phecodes first diag-
nosed after fundus image acquisition (Figure 3 and Table 
S6), and quantitative clinical traits and serological bio-
markers ascertained at fundus image acquisition (Figure 
S6 and Table S7). In all models, we adjusted for age, age 
squared, sex, smoking status, and ethnicity. Across all 
these analyses, significant associations were identified 
between the retinal vasculature and both systemic and 
ocular conditions.

With respect to associations with systemic condi-
tions, we found that low vascular density and FD were 
significantly (false discovery rate–corrected P<0.05) 
associated with higher odds of prevalent and incident 
cardiometabolic phenotypes, including hypertension, dia-
betes, anemia, and pulmonary disease.

First, each 1-SD decrease in retinal vascular den-
sity and FD was associated with higher odds of hav-
ing a history of hypertension (odds ratio [OR]Density, 1.08; 
ORFD, 1.09) and higher risk of developing new-onset 
hypertension (HRDensity, 1.15; HRFD, 1.12), with stron-
gest incident risk linked to new-onset hypertensive 

heart disease (HRDensity, 2.07; HRFD, 1.84). Accordingly, 
systolic blood pressure (SBP) and diastolic blood pres-
sure (DBP) were associated with lower retinal vascular 
density (βSBP, −0.13; βDBP, −0.12) and FD (βSBP, −0.10; 
βDBP, −0.08; in units of SD in retinal vascular trait per 
1-SD increase in blood pressure). In secondary analy-
ses, retinal vascular density and FD predicted incident 
hypertension even after adjustment for quantitative 
SBP and DBP (Figure S7).

Second, lower retinal vascular density and FD were 
associated with higher odds of having a history of dia-
betes, diabetic retinopathy, and ophthalmic manifesta-
tions of type 1 and type 2 diabetes, with the strongest 
effect estimate for prevalent (ORDensity, 3.38; ORFD, 3.25 
per SD) and incident (HRDensity, 1.56; HRFD, 1.42) oph-
thalmic manifestations of type 1 diabetes. However, 
additional adjustment of the incident type 2 diabetes 
association by hemoglobin A1c (HbA1c) at enrollment 
rendered the associations no longer statistically signifi-
cant (Figure S8). Accordingly, each 1-SD increase in 
glucose and HbA1c was associated with lower retinal 
vascular density (βGlucose, −0.03; βHbA1c, −0.01) and FD 
(βGlucose, −0.02; βHbA1c, −0.02; in units of SD in retinal 
vascular trait per 1-SD increase in blood pressure). 
Other associations with traits linked to metabolic dis-
ease were also detected, for example, body mass index 
and body fat percent with lower vascular density and 
FD. Associations with pulmonary phenotypes were also 
identified; lower retinal FD was associated with pulmo-
nary function (forced expiratory volume in the first sec-
ond of expiration and forced vital capacity) and sleep 
apnea (HRFD, 1.13).

Third, a strong link between anemia and lower retinal 
vasculature density and FD was also observed, with each 
1-SD decrease in retinal vascular density and FD being 
associated with higher odds of having a history of iron-
deficiency anemia (ORDensity, 1.19; ORFD, 1.24). Accord-
ingly, each 1-SD decrease in hematocrit percentage, 
hemoglobin concentration, and red blood cell count was 
associated with lower retinal vascular density and FD.

Multiple associations were also identified with ocular 
conditions, including associations across both anterior 
and posterior segments of the eye. Retinal vascu-
lar density and FD also were associated with incident 
ocular diagnoses, including conditions influencing both 
the posterior segment—myopia (HRDensity, 2.42; HRFD, 
1.65), age-related macular degeneration of the retina 
(HRDensity, 1.26; HRFD, 1.25), retinal detachments with 
defects (HRDensity, 1.77; HRFD, 1.43)—and the anterior 
segment—primary open-angle glaucoma (HRDensity, 1.56; 
HRFD, 1.33), cataracts (HRDensity, 1.34; HRFD, 1.34; Fig-
ure 3 and Table S6). Lower retinal FD and density were 
also associated with higher intraocular pressure and 
reduced visual acuity (Figure S9 and Table S5).

Further sensitivity analyses adjusted for prevalent 
hypertension and diabetes (Figure S10 and Table S8) 
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and mean spherical equivalent (Figure S11 and Table 
S9) are discussed in the Supplemental Results.

Common Variant GWAS and In Silico Analyses
GWASs for retinal vascular density and FD were carried 
out across 38 932 unrelated individuals and 15 580 782 
variants with minor allele frequency >0.001 in the UK 
Biobank, identifying 13 and 7 genome-wide–significant 
(P<5×10−8) loci, respectively (Figure 4A and 4B and Ta-
bles S10 and S11). Genomic heritability was estimated 
at 14.1% (SE, 1.6%) for FD and 21.0% (SE, 1.8%) for 
vascular density. Significant correlation was observed be-
tween prioritized genome-wide–significant, independent 
variants identified through fine mapping66 from the retinal 
vascular density and FD GWASs (Figure S12 and Table 
S12), with all loci from the vascular FD GWASs showing 
suggestive significance in the vascular density GWASs, 
and only 1 locus from the vascular density GWASs not 
showing significance in the FD GWASs (TJP2 intron 
variant, rs56207218-C; allele frequency, 21.2%; βDensity, 
−0.046 SD, PDensity=3.01×10−8; βFD, −0.016, PFD=0.053). 
A missense variant (rs5442-A, p.Gly272Ser; allele fre-
quency, 7.1%) in GNB3, encoding the G-protein β poly-
peptide 3 protein, was the top variant associated with 

vascular density in chromosome 12 (β, −0.13 SD; 
P=1.11×10−21) and is predicted to be deleterious by 
several in silico prediction tools, including PolyPhen,74 
SIFT,75 and PrimateAI.76 It was also suggestively asso-
ciated with vascular FD (β, −0.069 SD; P=1.06×10−7). 
Further sensitivity analyses and comparison with variants 
identified in a previous GWAS of vascular tortuosity24 are 
provided in the Supplemental Results (Figure S13 and 
S14 and Table S12).

After performing GWAS, we performed 3 sets of anal-
yses to prioritize the genes, traits, and biological path-
ways linked to the GWAS loci.

First, we performed causal gene prioritization using 
Polygenic Priority Score (PoPS), which combines infor-
mation across gene expression data from 73 publicly 
available bulk RNA sequencing and scRNA sequencing 
databases (including from retinal tissues), 8479 biologi-
cal pathways, and 8718 protein-protein interactions to 
prioritize likely implicated genes at each GWAS locus 
using GWAS summary statistics67 (Figure 4C and 4D 
and Figure S15). Across the majority of top loci, PoPS 
prioritized 1 gene (Table S13 and Figure S15). The 
top prioritized genes at the 7 FD loci include CTNNB1, 
OCA2, SLC45A2, MEF2C, IRF4, and GNB2, with simi-
lar PoPS identified for COLCA2 and COLCA1 at the 

Figure 2. Association of retinal vascular FD and density with incident mortality.
A, Association of low (≥2 SD below the mean) fractal dimension (FD) and density with incident mortality, stratified by whether the person has 
prevalent type 2 diabetes (T2D) or hypertension (HTN) at time of image acquisition. Analyses are adjusted for age, age squared, sex, smoking 
status, and ethnicity. B, Cumulative incidence of mortality across individuals with low FD and density who have a diagnosis of prevalent T2D or 
hypertension compared with those who do not. HR indicates hazard ratio.
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 associated chromosome 11 locus. Several of the priori-
tized PoPS genes at the 13 vascular density loci over-
lapped with those from the FD GWAS, including at the 
following PoPS-prioritized genes: COLCA1/COLCA2 

locus, CTNNB1, MEF2C, and IRF4 (which was prioritized 
as DUSP22/HUS1B in the density GWAS). Additional 
PoPS-prioritized genes uniquely genome-wide signifi-
cant in the vascular density GWAS included FXYD2, 

Figure 3. Phenome-wide associations with incident disease.
A, –Log10(P value) of associations of retinal vascular density and fractal dimension (FD) with incident disease plotted as grouped by phenotypic 
category. Associations were performed with Cox proportional hazards models adjusted for age, age squared, sex, smoking status, and ethnicity. B, 
Hazard ratio (HR) per 1-SD decrease in either vascular density (left) or FD (right). Labeled phenotypes across both plots have false discovery 
rate–corrected P<0.05. The x axis reflects an organized grouping of the phenotypes by phenotypic category and P value of association.
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GNB3, EIF2B2, ACTG1, DMPK, SH3YL1, ITPR1, RAS-
GEF1B, HLA-DA1, and TJP2. Outside of these loci, sev-
eral other genes were also suggestively prioritized by 
PoPS, including HLA-DRA, HLA-DRB1, ESR1, FGFR2, 
PDGFRA, and TYR for FD and UBC for vascular density 
(Figure S15).

Second, we identified other traits associated with the 
top variants, assessing traits with significant associa-
tions from the PheWAS (such as systemic traits includ-
ing blood pressure and diabetes, as well as ocular traits 
such as retinal detachment, myopia, glaucoma, diabetic 
retinopathy, and macular degeneration), in addition to 
traits showing strong associations on PhenoScanner for 
top variants (including melanoma, eye cancer, and skin 
color). Genetic correlation analyses across the genome 
identified significant inverse correlations between retinal 
vascular FD and density with previous published loci for 
myopia, age-related cataracts, lighter skin color, retinal 

detachment, SBP, and DBP (Figure S16a and S16b 
and Table S14). Further fine mapping of genome-wide–
significant loci was performed to prioritize potentially 
causal variants66 (Table S15). Retinal vascular density– 
and FD-lowering alleles at the fine-mapped variants 
had heterogeneous effects on the previous phenotypes 
assessed in genetic correlation analyses (Figure S16c 
and S16d and Table S16). In particular, retinal density– 
and FD-lowering alleles at several PoPS-prioritized 
genes showed associations with higher risk of skin neo-
plasms, malignant melanoma, and eye cancer (IRF4/
DUSP22, SLC45A2); a separate set of loci showed 
associations with lighter skin color (GNB2, ACTG1). One 
locus showing consistency with the phenotypic associa-
tions previously described was the retinal vascular den-
sity–lowering variant rs8070929-T (βDensity, −0.04 SD; 
PDensity=1.27×10−8) at the PoPS-prioritized gene ACTG1 
encoding the actin gamma 1 protein, for which each reti-

Figure 4. Genome-wide association studies and gene prioritization.
A and B, Manhattan plots visualizing the genome-wide association results for retinal vascular fractal dimension (FD; A) and density (B), which 
identify 7 and 13 loci, respectively. Gene prioritization with the Polygenic Priority Score (PoPS) method.67 C and D, Prioritized genes at each locus 
(see locus-specific prioritizations in Figure S15). The locus-specific genes prioritized by PoPS at each locus are labeled in A and B. The x axes in 
C and D are arbitrary and reflect the ordered genes by PoPS score. 
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nal vascular density-–lowering allele was genome-wide 
significantly associated with higher risk of advanced age-
related macular degeneration (OR, 1.13; P=1.65×10−11), 
reduced refractive error (β=−0.03; P=2.68×10−30), and 
lighter skin color (β=0.01; P=8.17×10−27) and sugges-
tively associated with higher risk of retinal detachment, 
age-related cataracts, skin neoplasms, and higher DBP 
(P<0.05; Figure S16c and S16d and Table S16).

Third, we performed gene set enrichment analyses 
to identify biological pathways overrepresented by the 
prioritized genes. Using the list of prioritized genes with 
PoPS z scores >1, we performed enrichment analyses 
across Elsevier pathways,77 identifying Bonferroni-sig-
nificant enrichment for VEGF/VEGFA/VEGF receptor/
platelet-derived growth factor receptor/angiopoietin sig-
naling, WNT signaling, endothelin signaling, atheroscle-
rosis, arterial and pulmonary hypertension, melanoma, 
and proteins with altered expression in cancers (Fig-
ure 5A and 5B). Pathway enrichment analysis using the 
Reactome pathways78 additionally identified an enrich-
ment of inflammatory pathways, including interleukin and 
chemokine pathways for PoPS genes prioritized in both 
the retinal vascular density and FD GWASs (Figure 5C 
and 5D and Tables S17 and S18).

Further results from rare variant association study 
grouping together rare (minor allele frequency <1%), 
disruptive (ie, MetaSVM70 missense deleterious or high-
confidence loss-of-function variants71) variants by gene 
are discussed in the Supplemental Results (Figure S17 
and Tables S19 and S20).

One-Sample Mendelian Randomization
Here, 1-sample Mendelian randomization was performed 
to assess the putative causal relationships between sys-
temic phenotypes on the retinal microvasculature and 
the retinal microvasculature on disease, specifically on 
ocular phenotypes.

First, given the strong link between hypertension and 
diabetes and retinal vascular indices in the PheWAS, 
1-sample mendelian randomization was performed using 
PRSs for SBP (75 variants), DBP (75 variants), and type 
2 diabetes (64 variants) comprising genome-wide–signif-
icant (P<5×10−8), independent variants from European 
GWASs external to the UK Biobank, as done previ-
ously.47,68 These PRSs were then associated with retinal 
vascular density and FD adjusted for age, age squared, 
sex, smoking status, and European ancestry. Significant 
associations were identified between the blood pressure 
PRS and both vascular density and FD, with the direction 
of association matching that identified previously in the 
PheWAS, with each 10 mm Hg in genetically elevated 
SBP being associated with a 0.09-SD decrease in vas-
cular density (P=4.4×10−6) and 0.13-SD decrease in FD 
(P=2.4×10−11), and each 10 mm Hg in genetically ele-
vated DBP being associated with a 0.13-SD decrease in 

vascular density (P=8.0×10−5) and 0.17-SD decrease in 
FD (P=3.5×10−7; Figure 6). Each 2-fold higher genetic 
risk for type 2 diabetes was associated with a 0.03-SD 
decrease in retinal vascular density (P=4.7×10−4); no 
significant association was observed between the type 2 
diabetes PRS and FD.

Second, to assess the phenome-wide influence of 
genetically elevated microvascular indices, PRSs for 
FD and vascular density were developed consisting of 
independent, genome-wide–significant (P<5×10−8) 
variants from the GWAS and then assessed among an 
independent set of UK Biobank participants who were 
not included in the original GWAS study. The strongest 
association was identified between both the vascular 
density and FD PRSs and skin cancers (OR, 1.14 per 
1-SD decrease in FD PRS, P=3.09×10−43; OR, 1.05 
per 1-SD decrease in density PRS, P=1.7×10−11; Table 
S21 and Figure S18); these associations were largely 
robust to adjustment for self-reported skin color, sunlight 
exposure, and sunlight sensitivity (OR, 1.04 per 1-SD 
decrease in FD PRS, P=4.22×10−5; OR, 1.04 per 1-SD 
decrease in density PRS, P=1.4×10−4; Table S22).

Among the epidemiological ocular associations iden-
tified previously in the PheWAS, concordant 1-sample 
mendelian randomization directional association was 
identified between each 1-SD increase in vascular den-
sity PRS and lower myopia (OR, 0.92; P=9.5×10−6; Fig-
ure S19), as well as retinal detachments and defects 
(OR, 0.94; P=5.7×10−4), that remained significant after 
adjustment for myopia (OR, 0.95,; P=0.0014; Figure 7).

DISCUSSION
In summary, we used deep learning to quantify in vivo 
microvascular architecture across nearly 100 000 hu-
man retinal fundus images and densely explore unbi-
ased phenome-wide and genome-wide assessments 
(Figure 8). Through phenome-wide association analyses, 
we identified systemic and ocular phenotypes linked to 
the retinal microvasculature. Genome-wide association 
analyses identified 7 novel loci associated with microvas-
cular branching complexity (as measured by FD) and 13 
loci associated with vascular density, enriched for genes 
among pathways related to angiogenesis, cancer, and in-
flammation. Last, we used mendelian randomization to 
assess the causal relation between systemic conditions 
and microvascular indices, as well as between micro-
vascular retinal indices and ocular conditions. Together, 
these findings permit several conclusions.

First, microvascular alterations detected from the 
retina are linked to diverse conditions, providing new 
insights into the microvasculature as a biomarker for 
systemic disease risk and severity. In particular, a lower 
microvascular density or fractal branching was associ-
ated with higher risk of incident mortality among those 
with prevalent hypertension or diabetes compared with 
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those without either condition. This suggests that lower 
microvascular density and branching complexity are 
associated with higher severity of disease among those 
with existing cardiometabolic disease. We also observed 
significant associations between lower retinal vascular 
density and FD and higher prevalence of, and separately 
higher risk for, cardiometabolic (hypertension, hyper-
tensive heart disease, diabetes, renal failure, elevated 
HbA1c, and body mass index), pulmonary (sleep apnea, 
abnormal pulmonary function tests), and hematopoietic 
(anemia) conditions. Retinal microvascular dysfunction 
may signify more widespread microvascular alterations. 
For example, hyperglycemia-induced cellular dysfunc-
tion and death are linked to widespread insufficient 
renewal of vascular endothelial and smooth muscle cells 
through sorbitol accumulation, glycosylation, and reac-
tive oxygen formation.26,79,80 Furthermore, hypertension-

induced sheer stress and anemia-induced deficits in gas 
and nutrient exchange may similarly impair the systemic 
microvasculature. Moreover, pulmonary conditions such 
as sleep apnea are a well-described clinical risk factor 
for ocular conditions.81,82 Of note, previous studies in 
small cohorts have been inconclusive or contradictory in 
the reported relationships between vascular FD and dia-
betes and hypertension.25–28

Second, we identify associations between lower reti-
nal vascular density and FD and higher risk of future ocu-
lar conditions. Although previous studies in small cohorts 
have identified associations between retinal vascular 
indices and prevalent diabetic retinopathy,25,26,37 this is, 
to the best of our knowledge, one of the first large-scale 
studies identifying associations with diverse future ocu-
lar conditions. Specifically, we identify multiple associa-
tions between lower retinal vascular FD and density and 

Figure 5. Pathway enrichment analysis.
Pathway enrichment analyses of the retinal vascular fractal dimension (FD) and density genome-wide association study results were performed 
using the prioritized genes with Polygenic Priority Score z score >1 across the (A) Elsevier pathways and (B) Reactome pathways. Top 
Bonferroni-significant results are listed (A), along with the enrichment odds ratios (ORs) and the enrichment P values (B). Further details on 
genes included in each pathway and enrichment statistics are given in Tables S17 and S18.
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higher risk of future incident conditions influencing the 
posterior segment of the eye (retinal detachment, dia-
betic retinopathy, macular degeneration, vitreous hemor-
rhage). In particular, retinal detachment is a potentially 
blinding ocular condition for which limited risk factors 
have been described, including ocular trauma, myopia, 
and family history. Here, we find evidence of significant 
association between lower retinal vascular density and 
FD and higher incidence of retinal detachment, indepen-
dently of myopia. These findings suggest that identifica-

tion of individuals with lower retinal vascular density may 
enable improved monitoring and blindness risk reduction 
in this high-risk population. Moreover, we also identify 
associations with the anterior segment of the eye (glau-
coma, cataracts), suggesting that the retinal vasculature 
may have physiological significance beyond the retina 
and vitreous fluid. Our observations are aligned with pre-
vious studies hypothesizing a link between the retinal 
vasculature and normal-tension glaucoma.83,84 Hypoth-
esized contributors to normal-tension glaucoma include 

Figure 6. One-sample mendelian randomization for DBP PRS, SBP PRS, and T2D PRS on retinal vascular density and FD.
A, Association of the diastolic blood pressure (DBP), systolic blood pressure (SBP), and type 2 diabetes (T2D) polygenic risk score (PRS) with 
normalized retinal vascular density and fractal dimension (FD) in a linear regression model adjusted for age, age squared, sex, smoking status, 
and the first 10 principal components of genetic ancestry. B, Relationship of the SBP, DBP, and T2D PRSs with retinal vascular FD and density. 
Horizontal and vertical dotted lines reflect the average value for the respective axis. Shaded gray region reflects the 95% CI using a restricted 
maximum likelihood generalized additive model with integrated smoothness from the gam() function in R. 
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vascular abnormalities impeding nutrient delivery to the 
inner retina, thereby resulting in ganglion cell degen-
eration.83,84 Together, these findings linking the retinal 
vasculature with ocular pathophysiology highlight the 
importance of the retinal microvasculature in ophthalmic 
health and help us understand the diverse mechanisms 
linking the retinal microvascular to impaired visual acuity 
and blindness.

Third, genome-wide association analyses identified 
genetic links between genes involved in angiogenesis, 
cancer, pigmentation, and inflammation and microvascula-
ture architecture. We observed a significant enrichment in 
pathways related to angiogenesis (VEGF, platelet-derived 
growth factor, angiopoietin), which are currently thera-
peutically targeted to inhibit neovascularization in diabetic 
retinopathy, advanced age-related macular degeneration, 
and many cancers.9–11 A significant genetic correlation 
with skin color was also observed, and several of the fine-

mapped top variants are strongly associated with skin 
neoplasms and lighter skin color (ie, at the PoPS-prior-
itized genes IRF4, SLC45A2, OCA2, DUSP22, ACTG1). 
Indeed, OCA2 encodes the oculocutaneous albinism 2 
protein that is known to result in lighter skin color and pre-
disposes to skin cancers.85 Additionally identified in both 
the rare variant association study and GWASs were pre-
dicted deleterious variants in MITF, a transcription factor 
necessary for normal melanocyte differentiation. MITF has 
been associated with Waardenburg syndrome, character-
ized by pigmentation anomalies of eyes, hair, and skin.86–88 
Previous work has also identified that MITF (melanocyte-
inducing transcription factor) protein labeling in human 
tumor samples is strong around the vessels.89 Moreover, 
2 of the GWAS loci identified across the FD and vascular 
density GWASs, namely GNB3 and GNB2, are G proteins 
and are known to be key moderators of chemokine sig-
nal transduction pathways. Notably, the missense variant 

Figure 7. One-sample mendelian randomization for vascular FD PRS and density PRS on retinal detachment.
A, Association of the vascular density PRS and fractal dimension (FD) polygenic risk score (PRS) with combined prevalent and incident retinal 
detachment. Original model includes the following covariates: age, age squared, sex, smoking status, and the first 10 principal components of 
genetic ancestry. +Myopia adjustment reflects additional adjustment for prevalent myopia at the time of image acquisition. B, Relationship of 
vascular density PRS and vascular FD PRS with fraction of individuals developing retinal detachments and defects during their lifetime. Horizontal 
and vertical dotted lines reflect the average value for the respective axis. Shaded gray region reflects the 95% CI using a restricted maximum 
likelihood binomial generalized additive model with integrated smoothness from the gam() function in R. OR indicates odds ratio. 
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Figure 8. Summary of key findings.
Here, we successfully implemented deep learning toward image quality control and vessel segmentation to extract 2 features of the retina: 
vascular density and fractal dimension (FD). Through phenome-wide analyses, we identified significant associations between low vascular 
density and FD and higher risk of multiple systemic and ocular phenotypes, including ocular conditions influencing both the anterior and posterior 
segments. Genome-wide association analyses of these microvascular indices discovered multiple loci enriched among pathways related to 
vascular biology, inflammation, and neovascularization in cancer and may hypothesize potential drug targets for risk modification. Mendelian 
randomization analyses identified that higher genetic risk for hypertension and type 2 diabetes is associated with lower microvascular density 
and that higher genetic risk for lower microvascular density is associated with retinal detachment (independently of myopia) and with skin cancer 
(independently of genetic ancestry principal components, self-reported skin color, and self-reported sun exposure and sun sensitivity). More 
broadly, our results illustrate the potential for using deep learning on retinal imaging to understand the microvasculature, with wide applications 
across diseases. This image was made with Biorender. GWAS indicates genome-wide association study.
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rs5442-A in GNB3 variant has previously been associ-
ated with retinal microvascular diameter,90 hypertension,91 
refractive error,92,93 and advanced age-related macular 
degeneration.94 Inflammatory and chemokine pathways 
were significantly enriched in both GWAS studies, with 
contributing genes prioritized by PoPS including IL2RA, 
IL23A, IL1R2, IL2, IL7R, IL6, MEF2A, PDGFRA, HLA mark-
ers, and others (Tables S16 and S17). Interleukins are 
known modulators of angiogenesis and antiangiogenesis 
in tumors,95 and inhibition of interleukins has been found 
to suppress VEGF expression in tumors. Previous work on 
retinal vascular tortuosity in the UK Biobank also identified 
genetic loci linked to cardiometabolic diseases and can-
cer.24 Genetic contributors to microvascular indices may 
provide insights for therapeutic targets with pleiotropic 
effects for retinopathy, cancer, and microvascular disease 
in other tissues.

Fourth, mendelian randomization analysis allowed 
assessment of directionality of the links observed in the 
epidemiological analysis. Mendelian randomization uses 
human genetics for causal inference by leveraging the 
random assortment of genetic variants during meiosis 
at conception, which diminishes susceptibility to con-
founding or reverse causality.96 Here, we identified that 
individuals with genetically elevated blood pressure have 
lower retinal vascular density and FD. Similarly, individu-
als with genetically elevated risk for type 2 diabetes also 
had lower retinal vascular density, although no significant 
association was detected with FD, suggesting that the 
relationship with vascular density may be through vessel 
diameter as opposed to branching complexity, as sup-
ported by previous work on retinal vascular caliber.14,16 
In addition, individuals predisposed to genetically lower 
vascular density have higher risk of myopia and higher 
risk of retinal detachments (independently of myopia 
and spherical equivalent) and higher risk of skin can-
cer (independently of principal components of genetic 
ancestry, self-reported skin color, and self-reported sun 
exposure and sun sensitivity). In particular, this genetic 
link between vascular density and retinal detachment, in 
addition to the phenotypic association of retinal vascular 
density with incident retinal detachment, highlights the 
likely causal link between these 2 phenotypes, thereby 
potentially identifying a new causal risk factor for retinal 
detachment that may be used for monitoring and thera-
peutic modulation.

Although our study has several strengths, there are 
important limitations to consider. First, it is possible that 
contributors to image quality, including the turbidity of 
the optical media, cataracts, and fundus pigmentation, 
may influence and confound the phenotypic and geno-
typic associations. However, we performed analyses 
conditioning on retinal conditions such as cataracts, reti-
nal detachments, and myopia, as well as skin color, with 
largely unchanged associations with systemic traits. Sec-
ond, although the TOPCON images are largely homoge-

neous in magnification, a range in image magnification 
exists that is correlated with an individual’s spherical 
equivalent. Sensitivity analyses adjusted for spherical 
equivalence and myopia indicated consistent associa-
tions. Third, given the paucity of accessible data sets 
with fundus images and genomic data and designation 
of retinal images as protected health information by the 
Health Insurance Portability and Accountability Act, we 
were unable to systematically replicate our GWAS results 
in adequately powered data sets. Previous GWASs of 
retinal vascular caliber performed in smaller studies90,97,98 
identified overlapping loci with our present results at the 
MEF2C, OCA2, and GNB3 loci. Fourth, although hyper-
tension and diabetes may be the causal pathway from 
microvascular dysfunction to cardiovascular disease, it 
is possible that hypertension and diabetes are true con-
founders in associations with cardiovascular disease. 
Fifth, the present analysis was done with the UK Bio-
bank, which is composed predominantly of Europeans, 
and had only fundus images acquired from TOPCON 
OCT scanner with limited retinal views. Further analyses 
in diverse ethnic cohorts and with other imaging modali-
ties are necessary.

Overall, these findings support retinal microvascular 
indices as biomarkers for risk prediction and disease 
monitoring of systemic and ocular conditions. Further-
more, genome-wide association provided an unbiased 
assessment of the genes and biological pathways linked 
to the microvasculature. More research is needed to 
evaluate added benefit beyond existing clinical risk pre-
dictors and protocols and feasibility for incorporation into 
a clinical screening workflow. More broadly, our results 
illustrate the potential for using deep learning on retinal 
imaging to understand the microvasculature, with wide 
applications across diseases.
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