269 research outputs found

    Parental Quality of Life and Involvement in Intervention for Children or Adolescents with Autism Spectrum Disorders: A Systematic Review

    Get PDF
    Previous research has examined several parental, child-related, and contextual factors associated with parental quality of life (QoL) among parents with a child or an adolescent with autism spectrum disorders (ASD); however, no systematic review has examined the relationship between parental QoL and parental involvement in intervention. To fill this gap, a systematic review was conducted using four electronic databases and checked reference lists of retrieved studies. Records were included in the systematic review if they presented original data, assessed parental QoL, and involvement in intervention for children or adolescents with ASD, were published in peer-reviewed journals between 2000 and 2020, and were written in English. Among the 96 screened full-texts, 17 articles met the eligibility criteria. The selected studies included over 2000 parents of children or adolescents with ASD. Three categories of parental involvement (i.e., none, indirect, direct) were identified, which varied across studies, although most had direct parental involvement. The results from this review show that increased parental involvement in the intervention for children or adolescents with ASD may be one way to promote their QoL. However, further research specifically focused on parental involvement during the intervention for children and adolescents with ASD is warranted

    Can We Distinguish Age-Related Frailty from Frailty Related to Diseases? Data from the MAPT Study

    Get PDF
    Abstract Background No study has tried to distinguish subjects that become frail due to diseases (frailty related to diseases) or in the absence of specific medical events; in this latter case, it is possible that aging process would act as the main frailty driver (age-related frailty). Objectives To classify subjects according to the origin of physical frailty: age-related frailty, frailty related to diseases, frailty of uncertain origin, and to compare their clinical characteristics. Materials and methods We performed a secondary analysis of the Multidomain Alzheimer Preventive Trial (MAPT), including 195 subjects ≥70 years non-frail at baseline who became frail during a 5-year follow-up (mean age 77.8 years ± 4.7; 70% female). Physical frailty was defined as presenting ≥3 of the 5 Fried criteria: weight loss, exhaustion, weakness, slowness, low physical activity. Clinical files were independently reviewed by two different clinicians using a standardized assessment method in order to classify subjects as: "age-related frailty", "frailty related to diseases" or "frailty of uncertain origin". Inconsistencies among the two raters and cases of uncertain frailty were further assessed by two other experienced clinicians. Results From the 195 included subjects, 82 (42%) were classified as age-related frailty, 53 (27%) as frailty related to diseases, and 60 (31%) as frailty of uncertain origin. Patients who became frail due to diseases did not differ from the others groups in terms of functional, cognitive, psychological status and age at baseline, however they presented a higher burden of comorbidity as measured by the Cumulative Illness Rating Scale (CIRS) (8.20 ± 2.69; vs 6.22 ± 2.02 frailty of uncertain origin; vs. 3.25 ± 1.65 age-related frailty). Time to incident frailty (23.4 months ± 12.1 vs. 39.2 ± 19.3 months) and time spent in a pre-frailty condition (17.1 ± 11.4 vs 26.6 ± 16.6 months) were shorter in the group of frailty related to diseases compared to age-related frailty. Orthopedic diseases (n=14, 26%) were the most common pathologies leading to frailty related to diseases, followed by cardiovascular diseases (n=9, 17%) and neurological diseases (n = 8, 15%). Conclusion People classified as age-related frailty and frailty related to diseases presented different frailty-associated indicators. Future research should target the underlying biological cascades leading to these two frailty classifications, since they could ask for distinct strategies of prevention and management

    AMiBA: scaling relations between the integrated Compton-y and X-ray derived temperature, mass, and luminosity

    Full text link
    We investigate the scaling relations between the X-ray and the thermal Sunyaev-Zel'dovich Effect (SZE) properties of clusters of galaxies, using data taken during 2007 by the Y.T. Lee Array for Microwave Background Anisotropy (AMiBA) at 94 GHz for the six clusters A1689, A1995, A2142, A2163, A2261, and A2390. The scaling relations relate the integrated Compton-y parameter Y_{2500} to the X-ray derived gas temperature T_{e}, total mass M_{2500}, and bolometric luminosity L_X within r_{2500}. Our results for the power-law index and normalization are both consistent with the self-similar model and other studies in the literature except for the Y_{2500}-L_X relation, for which a physical explanation is given though further investigation may be still needed. Our results not only provide confidence for the AMiBA project but also support our understanding of galaxy clusters.Comment: Accepted by ApJ; 8 pages, 3 figures, 5 table

    AMiBA: Broadband Heterodyne CMB Interferometry

    Get PDF
    The Y. T. Lee Array for Microwave Background (AMiBA) has reported the first science results on the detection of galaxy clusters via the Sunyaev Zel'dovich effect. The science objectives required small reflectors in order to sample large scale structures (20') while interferometry provided modest resolutions (2'). With these constraints, we designed for the best sensitivity by utilizing the maximum possible continuum bandwidth matched to the atmospheric window at 86-102GHz, with dual polarizations. A novel wide-band analog correlator was designed that is easily expandable for more interferometer elements. MMIC technology was used throughout as much as possible in order to miniaturize the components and to enhance mass production. These designs will find application in other upcoming astronomy projects. AMiBA is now in operations since 2006, and we are in the process to expand the array from 7 to 13 elements.Comment: 10 pages, 6 figures, ApJ in press; a version with high resolution figures available at http://www.asiaa.sinica.edu.tw/~keiichi/upfiles/AMiBA7/mtc_highreso.pd

    Mass and Hot Baryons in Massive Galaxy Clusters from Subaru Weak Lensing and AMiBA SZE Observations

    Full text link
    We present a multiwavelength analysis of a sample of four hot (T_X>8keV) X-ray galaxy clusters (A1689, A2261, A2142, and A2390) using joint AMiBA Sunyaev-Zel'dovich effect (SZE) and Subaru weak lensing observations, combined with published X-ray temperatures, to examine the distribution of mass and the intracluster medium (ICM) in massive cluster environments. Our observations show that A2261 is very similar to A1689 in terms of lensing properties. Many tangential arcs are visible around A2261, with an effective Einstein radius \sim 40 arcsec (at z \sim 1.5), which when combined with our weak lensing measurements implies a mass profile well fitted by an NFW model with a high concentration c_{vir} \sim 10, similar to A1689 and to other massive clusters. The cluster A2142 shows complex mass substructure, and displays a shallower profile (c_{vir} \sim 5), consistent with detailed X-ray observations which imply recent interaction. The AMiBA map of A2142 exhibits an SZE feature associated with mass substructure lying ahead of the sharp north-west edge of the X-ray core suggesting a pressure increase in the ICM. For A2390 we obtain highly elliptical mass and ICM distributions at all radii, consistent with other X-ray and strong lensing work. Our cluster gas fraction measurements, free from the hydrostatic equilibrium assumption, are overall in good agreement with published X-ray and SZE observations, with the sample-averaged gas fraction of = 0.133 \pm 0.027, for our sample = (1.2 \pm 0.1) \times 10^{15} M_{sun} h^{-1}. When compared to the cosmic baryon fraction f_b = \Omega_b/\Omega_m constrained by the WMAP 5-year data, this indicates /f_b = 0.78 \pm 0.16, i.e., (22 \pm 16)% of the baryons are missing from the hot phase of clusters.Comment: accepted for publication in ApJ; high resolution figures available at http://www.asiaa.sinica.edu.tw/~keiichi/upfiles/AMiBA7/ms_highreso.pd

    The Yuan-Tseh Lee Array for Microwave Background Anisotropy

    Full text link
    The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) is the first interferometer dedicated to studying the cosmic microwave background (CMB) radiation at 3mm wavelength. The choice of 3mm was made to minimize the contributions from foreground synchrotron radiation and Galactic dust emission. The initial configuration of seven 0.6m telescopes mounted on a 6-m hexapod platform was dedicated in October 2006 on Mauna Loa, Hawaii. Scientific operations began with the detection of a number of clusters of galaxies via the thermal Sunyaev-Zel'dovich effect. We compare our data with Subaru weak lensing data in order to study the structure of dark matter. We also compare our data with X-ray data in order to derive the Hubble constant.Comment: accepted for publication in ApJ (13 pages, 7 figures); a version with high resolution figures available at http://www.asiaa.sinica.edu.tw/~keiichi/upfiles/AMiBA7/pho_highreso.pd
    corecore