78 research outputs found

    cjun n terminal kinase jnk mediates cortico striatal signaling in a model of parkinson s disease

    Get PDF
    Abstract The cJun N-terminal kinase (JNK) signaling pathway has been extensively studied with regard to its involvement in neurodegenerative processes, but little is known about its functions in neurotransmission. In a mouse model of Parkinson's disease (PD), we show that the pharmacological activation of dopamine D1 receptors (D1R) produces a large increase in JNK phosphorylation. This effect is secondary to dopamine depletion, and is restricted to the striatal projection neurons that innervate directly the output structures of the basal ganglia (dSPN). Activation of JNK in dSPN relies on cAMP-induced phosphorylation of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32), but does not require N -methyl- d -aspartate (NMDA) receptor transmission. Electrophysiological experiments on acute brain slices from PD mice show that inhibition of JNK signaling in dSPN prevents the increase in synaptic strength caused by activation of D1Rs. Together, our findings show that dopamine depletion confers to JNK the ability to mediate dopamine transmission, informing the future development of therapies for PD

    Genome analysis and gene expression profiling of neuroblastoma and ganglioneuroblastoma reveal differences between neuroblastic and Schwannian stromal cells

    Get PDF
    Neuroblastic tumours are a group of paediatric cancers with marked morphological heterogeneity. Neuroblastoma (Schwannian stroma-poor) (NB-SP) is composed of undifferentiated neuroblasts. Ganglioneuroblastoma intermixed (Schwannian stroma-rich) (GNBi-SR) is predominantly composed of Schwannian stromal (SS) and neuroblastic (Nb) cells. There are contrasting reports suggesting that SS cells are non-neoplastic. In the present study, laser capture microdissection (LCM) was employed to isolate SS and Nb cells. Chromosome 1p36 deletion and MYCN gene amplification were found to be associated in two out of seven NB-SPs, whereas no abnormalities were observed in five GNBi-SRs. In some cases, loss of heterozygosity (LOH) at 1p36 loci was detected in Nb cells but not in the bulk tumour by LCM; furthermore, LOH was also identified in both SS and tumour tissue of a GNBi-SR. DNA gain and loss studied by comparative genomic hybridization were observed at several chromosome regions in NB-SP but in few regions of GNBi-SR. Finally, gene expression profiles studied using an oligo-microarray technique displayed two distinct signatures: in the first, 32 genes were expressed in NB-SP and in the second, 14 genes were expressed in GNBi-SR. The results show that NB-SP is composed of different morphologically indistinguishable malignant cell clones harbouring cryptic mutations that are detectable only after LCM. The degree of DNA imbalance is higher in NB-SP than in GNBi-SR. However, when the analysis of chromosome 1p36 is performed at the level of microdissection, LOH is also observed in SS cells. These data provide supportive evidence that SS cells have a less aggressive phenotype and play a role in tumour maturation. Copyright © 2005 Pathological Society of Great Britain and Ireland

    Inhibition of IL-1ÎČ signaling normalizes NMDA-dependent neurotransmission and reduces seizure susceptibility in a mouse model of Creutzfeldt-Jakob disease

    Get PDF
    Creutzfeldt-Jakob disease (CJD) is a neurodegenerative disorder caused by prion protein (PrP) misfolding, clinically recognized by cognitive and motor deficits, electroencephalographic abnormalities, and seizures. Its neurophysiological bases are not known. To assess the potential involvement of NMDA receptor (NMDAR) dysfunction, we analyzed NMDA-dependent synaptic plasticity in hippocampal slices from Tg(CJD) mice, which model a genetic form of CJD. Because PrP depletion may result in functional upregulation of NMDARs, we also analyzed PrP knock-out (KO) mice. Long-term potentiation (LTP) at the Schaffer collateral-commissural synapses in the CA1 area of ∌100-d-old Tg(CJD) mice was comparable to that of wild-type (WT) controls, but there was an inversion of metaplasticity, with increased GluN2B phosphorylation, which is indicative of enhanced NMDAR activation. Similar but less marked changes were seen in PrP KO mice. At ∌300 d of age, the magnitude of LTP increased in Tg(CJD) mice but decreased in PrP KO mice, indicating divergent changes in hippocampal synaptic responsiveness. Tg(CJD) but not PrP KO mice were intrinsically more susceptible than WT controls to focal hippocampal seizures induced by kainic acid. IL-1ÎČ-positive astrocytes increased in the Tg(CJD) hippocampus, and blocking IL-1 receptor signaling restored normal synaptic responses and reduced seizure susceptibility. These results indicate that alterations in NMDA-dependent glutamatergic transmission in Tg(CJD) mice do not depend solely on PrP functional loss. Moreover, astrocytic IL-1ÎČ plays a role in the enhanced synaptic responsiveness and seizure susceptibility, suggesting that targeting IL-1ÎČ signaling may offer a novel symptomatic treatment for CJD.SIGNIFICANCE STATEMENT Dementia and myoclonic jerks develop in individuals with Creutzfeldt-Jakob disease (CJD), an incurable brain disorder caused by alterations in prion protein structure. These individuals are prone to seizures and have high brain levels of the inflammatory cytokine IL-1ÎČ. Here we show that blocking IL-1ÎČ receptors with anakinra, the human recombinant form of the endogenous IL-1 receptor antagonist used to treat rheumatoid arthritis, normalizes hippocampal neurotransmission and reduces seizure susceptibility in a CJD mouse model. These results link neuroinflammation to defective neurotransmission and the enhanced susceptibility to seizures in CJD and raise the possibility that targeting IL-1ÎČ with clinically available drugs may be beneficial for symptomatic treatment of the disease

    mTOR-related synaptic pathology causes autism spectrum disorder-associated functional hyperconnectivity.

    Get PDF
    Postmortem studies have revealed increased density of excitatory synapses in the brains of individuals with autism spectrum disorder (ASD), with a putative link to aberrant mTOR-dependent synaptic pruning. ASD is also characterized by atypical macroscale functional connectivity as measured with resting-state fMRI (rsfMRI). These observations raise the question of whether excess of synapses causes aberrant functional connectivity in ASD. Using rsfMRI, electrophysiology and in silico modelling in Tsc2 haploinsufficient mice, we show that mTOR-dependent increased spine density is associated with ASD -like stereotypies and cortico-striatal hyperconnectivity. These deficits are completely rescued by pharmacological inhibition of mTOR. Notably, we further demonstrate that children with idiopathic ASD exhibit analogous cortical-striatal hyperconnectivity, and document that this connectivity fingerprint is enriched for ASD-dysregulated genes interacting with mTOR or Tsc2. Finally, we show that the identified transcriptomic signature is predominantly expressed in a subset of children with autism, thereby defining a segregable autism subtype. Our findings causally link mTOR-related synaptic pathology to large-scale network aberrations, revealing a unifying multi-scale framework that mechanistically reconciles developmental synaptopathy and functional hyperconnectivity in autism

    The intracellular chloride ion channel protein CLIC1 undergoes a redox-controlled structural transition.

    Get PDF
    Most proteins adopt a well defined three-dimensional structure; however, it is increasingly recognized that some proteins can exist with at least two stable conformations. Recently, a class of intracellular chloride ion channel proteins (CLICs) has been shown to exist in both soluble and integral membrane forms. The structure of the soluble form of CLIC1 is typical of a soluble glutathione S-transferase superfamily protein but contains a glutaredoxin-like active site. In this study we show that on oxidation CLIC1 undergoes a reversible transition from a monomeric to a non-covalent dimeric state due to the formation of an intramolecular disulfide bond (Cys-24-Cys-59). We have determined the crystal structure of this oxidized state and show that a major structural transition has occurred, exposing a large hydrophobic surface, which forms the dimer interface. The oxidized CLIC1 dimer maintains its ability to form chloride ion channels in artificial bilayers and vesicles, whereas a reducing environment prevents the formation of ion channels by CLIC1. Mutational studies show that both Cys-24 and Cys-59 are required for channel activity

    Crystal structure of a soluble form of the intracellular chloride ion channel CLIC1 (NCC27) at 1.4-A resolution.

    Get PDF
    Abstract CLIC1 (NCC27) is a member of the highly conserved class of chloride ion channels that exists in both soluble and integral membrane forms. Purified CLIC1 can integrate into synthetic lipid bilayers forming a chloride channel with similar properties to those observed in vivo. The structure of the soluble form of CLIC1 has been determined at 1.4-A resolution. The protein is monomeric and structurally homologous to the glutathioneS-transferase superfamily, and it has a redox-active site resembling glutaredoxin. The structure of the complex of CLIC1 with glutathione shows that glutathione occupies the redox-active site, which is adjacent to an open, elongated slot lined by basic residues. Integration of CLIC1 into the membrane is likely to require a major structural rearrangement, probably of the N-domain (residues 1–90), with the putative transmembrane helix arising from residues in the vicinity of the redox-active site. The structure indicates that CLIC1 is likely to be controlled by redox-dependent processes

    Personalization of regorafenib treatment in metastatic gastrointestinal stromal tumours in real-life clinical practice

    Get PDF
    Background: Regorafenib (REG) has now been approved as the standard third-line therapy in metastatic gastrointestinal stromal tumour (GIST) patients at the recommended dose and schedule of 160 mg once daily for the first 3 weeks of each 4-week cycle. However, it has a relevant toxicity profile that mainly occurs within the first cycles of therapy, and dose and schedule adjustments are often required to reduce the frequency or severity of adverse events and to avoid early treatment discontinuation. To date, large amounts of data on the use of REG in metastatic GIST patients in daily clinical practice are not available, and we lack information about how this treatment personalization really affects the quality of life (QoL) of patients. The aim of the present retrospective study is to build a comprehensive picture of all alternative REG strategies adopted in daily clinical practice for use in metastatic GIST patients. Methods: Metastatic GIST patients treated with dose adjustment or alternative schedules of REG at seven reference Italian centres were retrospectively included. Results: For a total of 62 metastatic GIST patients, we confirmed that REG treatment adjustment is common in clinical practice and that it is very heterogeneous, with approximately 20 different strategies being adopted. Independent of which strategy is chosen, treatment personalization has led to a clinical benefit defined as complete or partial resolution of side effects in almost all patients, affecting the duration of REG treatment. Conclusions: The personalization of REG, even if it is heterogeneous, seems to be crucial to maximize the overall treatment duration

    Nuclear ERK1/2 signaling potentiation enhances neuroprotection and cognition via Importinα1/KPNA2

    Get PDF
    Cell signaling is central to neuronal activity and its dysregulation may lead to neurodegeneration and cognitive decline. Here, we show that selective genetic potentiation of neuronal ERK signaling prevents cell death in vitro and in vivo in the mouse brain, while attenuation of ERK signaling does the opposite. This neuroprotective effect mediated by an enhanced nuclear ERK activity can also be induced by the novel cell penetrating peptide RB5. In vitro administration of RB5 disrupts the preferential interaction of ERK1 MAP kinase with importinα1/KPNA2 over ERK2, facilitates ERK1/2 nuclear translocation, and enhances global ERK activity. Importantly, RB5 treatment in vivo promotes neuroprotection in mouse models of Huntington's (HD), Alzheimer's (AD), and Parkinson's (PD) disease, and enhances ERK signaling in a human cellular model of HD. Additionally, RB5‐mediated potentiation of ERK nuclear signaling facilitates synaptic plasticity, enhances cognition in healthy rodents, and rescues cognitive impairments in AD and HD models. The reported molecular mechanism shared across multiple neurodegenerative disorders reveals a potential new therapeutic target approach based on the modulation of KPNA2‐ERK1/2 interactions

    Understanding Factors Associated With Psychomotor Subtypes of Delirium in Older Inpatients With Dementia

    Get PDF
    • 

    corecore