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Abstract 

 

 

The cJun N-terminal kinase (JNK) signaling pathway has been extensively studied with regard to its 

involvement in neurodegenerative processes, but little is known about its functions in neurotransmission. 

In a mouse model of Parkinson’s disease (PD), we show that the pharmacological activation of dopamine 

D1 receptors (D1R) produces a large increase in JNK phosphorylation. This effect is secondary to 

dopamine depletion, and is restricted to the striatal projection neurons that innervate directly the output 

structures of the basal ganglia (dSPN). Activation of JNK in dSPN relies on cAMP-induced 

phosphorylation of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32), but does 

not require N-methyl-D-aspartate (NMDA) receptor transmission. Electrophysiological experiments on 

acute brain slices from PD mice show that inhibition of JNK signaling in dSPN prevents the increase in 

synaptic strength caused by activation of D1Rs. Together, our findings show that dopamine depletion 

confers to JNK the ability to mediate dopamine transmission, informing the future development of 

therapies for PD. 

 

Key words: dopamine, striatum, mouse, long-term depression, Parkinson´s disease, L-DOPA 
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Introduction 

 

Dopamine transmission is involved in numerous basic physiological processes and its abnormal 

activity is characteristic of several neuropsychiatric and neurodegenerative disorders, including drug 

addiction and Parkinson’s disease (PD). Dopamine’s effects are enacted through binding to two major 

types of G-protein coupled receptors, the D1 (D1R) and D2 (D2R) receptors, which are linked to 

stimulation and inhibition of cAMP signaling, respectively [1].  

In experimental models of PD, the loss of dopaminergic afferents to the striatum is associated with 

sensitized dopamine transmission. Previous work shows that this sensitization is particularly prominent 

for D1Rs [2,3], which are selectively expressed in the striatal projection neurons (SPNs) that form the 

direct pathway to the output nuclei of the basal ganglia [4]. D1R sensitization in response to dopamine 

depletion has been attributed to abnormal recruitment of D1Rs at the cell surface, as well as increased 

levels of Golf and adenylyl cyclase [5-8]. These changes dramatically enhance the effects produced by 

dopaminergic drugs on cAMP signaling [9]. In addition, sensitized D1R transmission confers on L-

DOPA, the most commonly prescribed medication for PD, the ability to activate non-canonical signal 

transduction pathways, such as the extracellular signal-regulated kinases (ERK) and the mammalian 

target of rapamycin  [9-14]. Whether activation of sensitized D1Rs also leads to the stimulation of other 

downstream targets in SPNs remains to be established.  

The cJun N-terminal kinase (JNK) signaling pathway is a member of the mitogen-activated protein 

kinase family, which has been extensively studied with regard to cell survival and proliferation. The 

primary target of JNK is the early response transcription factor, cJun, which is a component of the 

adaptor protein-1 (AP-1) [15,16].  JNK-mediated phosphorylation enhances the transcriptional efficiency 

of cJun by increasing its binding to DNA at promoter sites [17,18]. Work in human neuroblastoma cells 

showed that D1Rs activate JNK via stimulation of cAMP-dependent protein kinase [19]. Moreover, 

repeated administration of cocaine, a drug which acts by promoting dopamine transmission, results in a 
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transient increase in the phosphorylation of JNK [20]. However, despite the potential clinical 

implications, virtually nothing is known on the role of JNK in dopamine transmission in PD. 

To address this question, we investigated whether striatal JNK mediates the cellular and synaptic 

effects of D1R activation in naïve mice and in the 6-hydroxydopamine (6-OHDA) mouse model of PD. 

We find that activation of D1Rs with a specific agonist or L-DOPA increases the phosphorylation of JNK 

and cJun in SPNs that project directly to the output nuclei of the basal ganglia (dSPN). This effect is 

observed in concomitance with dopamine depletion, which is one of the cardinal features of PD, and is 

mediated by cAMP-dependent phosphorylation of dopamine- and cAMP-regulated phosphoprotein of 32 

kDa (DARPP-32). Finally, we show that JNK is involved in the D1R-mediated regulation of synaptic 

mechanisms of plasticity at cortico-striatal synapses on dSPN in the disease state, but not under 

physiological conditions.   
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Materials and Methods 

 

Animals 

C57BL/6J mice (3 months old, 25-30 g) were purchased from Charles River Laboratories 

(Netherlands). Drd1a-EGFP and Drd2-EGFP mice were generated by the GENSAT (Gene Expression 

Nervous System Atlas) program at the Rockefeller University [21]. T34A DARPP-32 mutant mice were 

generated as described in [22]. All transgenic mice were backcrossed on a C57BL/6 background for at 

least ten generations. Animals were maintained in a 12-h light-dark cycle, in stable conditions of 

temperature (22°C), with food and water ad libitum. All experiments had received prior approval by the 

local animal ethical committee, Stockholms Norra Djurförsöksetiska Nämnd, and were carried out in 

accordance with the European Community Council Directive of 24 November 1986 (86/609/EEC). 

 

Drugs 

Drugs were dissolved in saline and injected intraperitoneally in a volume of 10 ml/kg of body weight. 

L-DOPA (Sigma Aldrich) (10 mg/kg) was administered in combination with the peripheral DOPA 

decarboxylase inhibitor, benserazide hydrochloride (Sigma Aldrich) (7.5 mg/Kg). SCH23390 (Abcam) 

(0.2 mg/Kg) and MK-801 (Tocris) (0.15 mg/Kg) were injected 15 and 30 min prior to L-DOPA, 

respectively. SKF38393 (Tocris) was administered at the dose of 10 mg/Kg. For the electrophysiological 

experiments, DPCPX (500 nM, Tocris), L-DOPA (10 M, Tocris), SKF38393 (3µM Tocris) were bath 

applied during the recoding, as indicated in the corresponding figure. SP600125 (Tocris) was dissolved in 

DMSO and used at the final concentration of 10 µM in the pipette solution.  JNK-IN-8 (Selleck 

Chemicals) stock solution was prepared in DMSO, and used at the final concentration of 1 µM. Control 

solutions for the experiments with JNK inhibitors always contained the corresponding DMSO 

concentration (up to 0.1%). 
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6-OHDA lesion 

In order to deplete dopamine in the right striatum, mice were injected with 6-hydroxydopamine-HCl 

(6-OHDA; Sigma-Aldrich, Sweden AB) into the ipsilateral medial forebrain bundle (MFB). All animals 

received subcutaneous injections of Temgesic
®
 as analgesic at a dose of 0.1 mg/kg, before the surgical 

procedure. Anesthesia was induced with 4% isofluorane and maintained with 2% isoflurane. The mouse 

was positioned in a stereotaxic frame (David Kopf Instruments, Tujunga, CA) on a heating pad to 

maintain normothermia. 6-OHDA was dissolved in 0.02% ascorbic acid in saline at a concentration of 

3.75 μg of free-base 6-OHDA per microliter. Each mouse was injected with 1 μl (0.2 μl /min) of solution 

into the right MFB according to the following coordinates (mm): anteroposterior (AP), -1.2; mediolateral 

(ML), -1.2; dorsoventral (DV), -4.8 (all millimeters relative to bregma). The needle was left in place for 5 

min before and after injection. Mice were allowed to recover for 3 weeks before experimentations. The 6-

OHDA lesion was evaluated by immunofluorescence for tyrosine hydroxylase (TH); only animals with a 

reduction of TH immunoreactivity of 85% or more were included in the study.    

 

Immunofluorescence 

At the indicated times after drug treatments, mice were deeply anesthetized with sodium 

pentobarbital (200 mg/kg, i.p., Sanofi-Aventis, France) and perfused transcardially with 4% (weight/vol) 

ice-cold paraformaldehyde in 0.1M phosphate buffer. The brains were post-fixed overnight in the same 

solution and 40 μm-thick coronal sections were cut with a Vibratome (Leica, Germany). Immunolabeling 

for phospho-JNK was performed using the tyramide signal amplification (TSA) protocol with an anti-

phospho JNK antibody (1:100; 9251, Cell Signalling Technology, Sweden) detected with an HRP-

conjugated secondary antibody (Dako, Glostrup, Denmark) and Cy3-conjugated tyramide (1:500; Perkin 

Elmer; Waltham, MA, USA). Phospho-cJun was visualized using an anti-phospho cJun primary antibody 

raised against phospho-Ser73-cJun (1:100; 9164, Cell Signalling Technology, Sweden) and a Cy3-
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conjugated secondary antibody (1:400, Jackson Laboratories). In a subset of experiments, phospho-cJun 

was also visualized using an antibody against phospho-Ser63-cJun with undistinguishable results (data 

not shown). A primary antibody against EGFP (1:1000; Aves labs, Tigard, OR, USA) and a 488-

conjugated secondary antibody (1:500; Life Technologies, Paisley, UK) were used to visualize EGFP. 

Triple-labeling for P-JNK/P-cJun/EGFP was performed as described in [23]. Briefly, P-JNK staining was 

carried out using the TSA technique and microwave treatment of the sections was performed before 

proceeding with the P-cJun/EGFP staining. Immunofluorescence against TH was carried out using an 

anti-TH primary antibody (1:500, AB152, Millipore) and a Cy3-conjugated secondary antibody (1:400, 

Jackson Laboratories). Single-, double- and triple-labeled images of the dorsal striatum were captured 

using sequential laser scanning confocal microscopy (Zeiss LSM, Carl Zeiss, Jena, Germany) at 20, 40 

and 63X magnification. Quantification of staining was obtained averaging two 20X images per section, in 

two sections per animal, by counting positive cells above background using Image J software and the 

average number of positive cells was reported.  

 

Ex vivo slice experiments  

Mice with a unilateral injection of 6-OHDA in the MFB were killed by decapitation and the brains 

rapidly removed. Coronal slices (250 μm) were prepared using a vibratome (Leica, Germany) and 

punches corresponding to the dorsal striatum were dissected out from the control, or the 6-OHDA-lesion 

side. Two punches were placed in individual 5-ml polypropylene tubes containing 2 ml of Krebs-Ring 

bicarbonate buffer containing 118 mM NaCl, 4.7 mM KCl, 1.3 mM CaCl2, 1.5 mM MgSO4, 1.2 mM 

KH2PO4, 25 mM NaHCO3 and 11.7 mM glucose, aerated with 95% O2 and 5% CO2. The samples were 

equilibrated at 30 °C for 30 min, followed by incubation with either SP600125 (20 μM) or JNK-IN-8 (10 

μM) for 15 and 45 min, respectively. SKF38393 (3 μM) was added for 5 min with or without JNK 

inhibitors. After incubation, the punches were removed and sonicated in 1% SDS for Western blotting 

analysis. 
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Western blotting 

Aliquotes (5 μl) of the homogenate from the ex vivo slice experiment were used for protein 

quantification with a BCA assay kit (Pierce, Europe). Proteins were separated by SDS-polyacrylamide gel 

electrophoresis and transferred overnight to PVDF membranes (Amersham Pharmacia Biotech, Uppsala, 

Sweden). The following primary antibodies were used: anti-TH (1:2000, AB152, Millipore), anti-

phospho-Ser73-cJun (1:500; 9164, Cell Signalling Technology, Sweden), anti-total-cJun (1:1000; 9165, 

Cell Signaling Technology, Sweden), anti-phospho ERK 1/2 (1:2000; Cell Signaling Technology, 

Sweden), anti-total ERK 1/2 (1:2000, Cell Signaling Technology, Sweden), anti--actin (1:10000, A5441 

Sigma-Aldrich, Sweden). 

 

Acute slice preparation 

Mice were anesthetized with isoflurane and decapitated, and their brains were transferred to ice-cold 

artificial cerebrospinal fluid (aCSF) containing 110 mM choline chloride, 2.5 mM KCl, 1.25 mM 

NaH2PO4, 7 mM MgCl2, 0.5 mM CaCl2, 25 mM NaHCO3, 25 mM D-glucose and 11.6 mM ascorbic acid, 

saturated with 95% O2 and 5% CO2 for dissection. Horizontal slices (270 μm thick) were prepared using a 

Vibratome 1000S slicer (Leica), then transferred to new aCSF containing 115 mM NaCl, 3.5 mM KCl, 

1.2 mM NaH2PO4, 1.3 mM MgCl2, 2 mM CaCl2, 25 mM NaHCO3, and 25 mM D-glucose, and aerated 

with 95% O2 and 5% CO2. After incubating for 20 min at 32 °C, slices were kept at 22-24 °C. During 

experiments, slices were continuously superfused with aCSF at a rate of 2 ml/min at 28 °C. 

 

Electrophysiology 

Whole-cell recordings were performed on horizontal brain slices, which preserve intact corticostriatal 

connections [24]. SPN in the DLS were visualized under infrared-differential interference contrast and 

were identified on the basis of morphological and electrical properties [25]. After recording, the identity 
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of the cells was confirmed by immunostaining to measure the expression of substance P (which is 

expressed in dSPN) and adenosine A2A receptors (which are expressed in the SPN that project indirectly 

to the output nuclei of the basal ganglia; iSPNs) [26]. Patch pipettes (4-6 MΩ) were filled with a solution 

containing 130 mM KMeSO4, 5 mM KCl, 5 mM NaCl, 10 mM HEPES, 2 mM MgCl2, 0.1 mM EGTA, 

0.05 mM CaCl2, 2 mM Na2ATP and 0.4 mM Na3GTP (pH 7.2-7.3, 280-290 mOsm/kg) and with 

Neurobiotin (0.5 mg/ml). Excitatory postsynaptic potentials (EPSPs) in the DLS were evoked in presence 

of the GABAA receptor antagonist gabazine (10 µM) by stimulation of the somatosensory cortex layer 5, 

and acquired every 10 s. Long-term synaptic depression induced by high-frequency stimulation (HFS-

LTD) was generated with 4 × 1-s-long 100 Hz trains repeated every 10 s. During train stimulation, the 

postsynaptic cell was depolarized from -80 to -50 mV to mimic cortically-induced up-states. Data were 

excluded when the input resistance (Rinp) changed ˃20%. The occurrence and magnitude of synaptic 

plasticity was evaluated by comparing the EPSP amplitudes from the last 10 min of baseline recordings 

with the values at 25-35 min after HFS. LTD plots were generated by averaging the peak amplitude of 

individuals EPSPs in 2 min bin. After recording, brain slices were fixed with 4% PFA. Antigen retrieval 

(sodium citrate 50 mM, 30 min, 80 °C) was performed and the slices were incubated with primary 

antibodies specific for iSPNs (anti-A2A, 1:250, Enzo Biosciences) and for dSPN (anti-substance P, 

1:200, Millipore), diluted in 0.1 M PB containing 0.3% (v/v) Triton X-100 and 0.02% NaN3). Sections 

were then incubated in Alexa 568-conjugated streptavidin (1:5000; Invitrogen), followed by secondary 

antibodies (Invitrogen). 

 

Statistics 

Biochemical data were analyzed with unpaired, two-tailed t-test, one-way (1W) or two-way (2W) 

analysis of variance (ANOVA), where lesion and treatment/time/genotype were the independent 

variables. Electrophysiological data were analyzed by one-way repeated measures (1W RM) ANOVA for 

comparisons within a group, and by 1W ANOVA for between-group comparisons (GraphPad Instat 6 
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software). Post hoc analyses (Tukey and Dunnet multiple comparison tests) were only performed for 

ANOVAs that yielded significant main effects. For comparisons of two groups, an independent two-

sample t-test was used. 

 

Results  

 

L-DOPA increases phosphorylation of JNK and cJun in the dopamine depleted, but not in the 

intact, striatum 

C57BL/6J mice with a unilateral 6-OHDA lesion were injected with either saline or L-DOPA (10 

mg/kg, i.p.) and changes in the phosphorylation of JNK and cJun were determined after 15, 30, 60, or 120 

min. Fig. 1A shows the loss of dopaminergic innervation produced by 6-OHDA, assessed as lack of TH-

immunoreactivity in the dorso-lateral striatum (DLS) ipsilateral to the lesion. The 6-OHDA-lesion per se 

did not produce any modification in the state of phosphorylation of JNK (Fig. 1B, upper panels and Fig. 

1D, left histogram) and cJun (Fig. 1C, upper panels and Fig. 1E, left histogram). Administration of L-

DOPA increased the number of cells immunoreactive for phosphorylated JNK (P-JNK; Fig. 1B, lower 

panels) (p < 0.0001) and cJun (P-cJun; Fig. 1C, lower panels) (p < 0.0001), in the DLS ipsilateral to the 

6-OHDA-lesion. The effects of L-DOPA on both P-JNK and P-cJun peaked 15 min after injection and 

returned to near baseline after 120 min (Fig. 1D,E, right line graphs). In contrast, L-DOPA had no effect 

in the intact DLS, contralateral to the 6-OHDA-lesion (cf. left panels in Fig. 1B,C, and left histograms in 

Fig. 1D,E).   

 

L-DOPA regulates JNK signaling in the D1R expressing dSPN  

To determine whether the effects of L-DOPA were cell-type specific, we examined changes in 

phosphorylation of JNK and cJun in dSPN, which express D1Rs, and in the iSPNs, which are instead 

enriched in D2Rs. For this purpose, 6-OHDA was injected in mice expressing EGFP in dSPN (Drd1a-
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EGFP mice), or iSPNs (Drd2-EGFP mice). Mice were then treated with L-DOPA (10 mg/kg, i.p.) and 

perfused for immunohistochemical analysis 30 min later. In Drd2-EGFP mice, L-DOPA-induced 

phosphorylation of JNK (Fig. 2A, upper panels) and cJun (Fig. 2B, upper panels) was localized in EGFP-

negative cells (p = 0.0002 for P-JNK and p = 0.0007 for P-cJun). Conversely, in Drd1a-EGFP mice L-

DOPA-induced phosphorylation of JNK (Fig. 2A, lower panels) and cJun (Fig. 2B, lower panels) was 

largely co-localized with EGFP (p = 0.0005 for P-JNK and p = 0.0012 for P-cJun). High magnification of 

the striatum from a Drd2-EGFP mouse revealed that P-JNK and P-cJun were increased in the same 

EGFP-negative SPNs (Fig. 2C). These results indicate that L-DOPA enhances the phosphorylation of 

JNK and cJun specifically in dSPN.  

 

Pharmacological activation of D1Rs promotes JNK signaling in the dopamine depleted striatum 

The selective localization of P-JNK and P-cJun in dSPN suggests that the effect of L-DOPA occurs 

through the activation of D1Rs, which are highly enriched in this neuronal subpopulation. Consistent with 

this, the ability of L-DOPA to increase P-JNK in the dopamine depleted striatum was abolished by the 

D1R antagonist SCH23390 (0.2 mg/kg) (Fig. 3A,B; p < 0.0001). Similarly, L-DOPA-induced cJun 

phosphorylation was markedly decreased by SCH23390 (Fig. 3C,D; p = 0.0055). 

To confirm the involvement of D1Rs in the regulation of JNK and further assess the impact of 

dopamine depletion on signaling processes, mice with a unilateral 6-OHDA lesion were treated with the 

selective D1R agonist, SKF38393 (10 mg/Kg). Administration SKF38393 did not affect P-JNK (Fig. 

3E,F) and P-cJun (Fig. 3G,H) in intact striata (i.e. contralateral to the 6-OHDA-lesion). In contrast, 

SKF38393 induced a large increase in the number of P-JNK (Fig. 3E,F; p < 0.0001) and P-cJun (Fig. 

2G,H; p = 0.0001) immunoreactive cells in the dopamine depleted striata (i.e. ipsilateral to the 6-OHDA-

lesion). 
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L-DOPA-mediated regulation of JNK and cJun requires cAMP signaling via DARPP-32, but is 

independent of NMDA receptor transmission 

In striatal SPNs, one of the primary effects of D1R activation is the phosphorylation of DARPP-32, 

an inhibitor of protein phosphatase-1 (PP-1) required for cAMP signaling [27]. Therefore, we 

investigated whether DARPP-32 was required for L-DOPA-induced phosphorylation of JNK and cJun. 

Mice expressing a mutated form of DARPP-32, which lacks the activating cAMP-dependent protein 

kinase (PKA) phosphorylation site (Thr34) (T34A DARPP-32 mutant mice), were injected unilaterally 

with 6-OHDA and treated with L-DOPA. We found that functional inactivation of DARPP-32 decreased 

the L-DOPA-induced phosphorylation of JNK and cJun (Fig. 4A, B, p < 0.0001 for P-JNK;  Fig. 4C,D, p 

= 0.005 for P-cJun).  

The ability of dopaminergic drugs to activate ERK depends on NMDA receptor transmission [28-30]. 

Similarly, in brain regions other than the striatum, activation of JNK requires intact glutamate receptors 

signaling [31]. Therefore, we examined whether NMDA receptors are involved in the effects of L-DOPA. 

For this purpose, we treated PD mice with L-DOPA or a combination of L-DOPA and the non-

competitive NMDA receptor antagonist, MK-801 (0.15 mg/kg). Inhibition of NMDA receptors did not 

impact the increase in the number of P-JNK- and P-cJun-positive cells induced by L-DOPA in the 

dopamine depleted striatum (Fig. 4E-H, p > 0.05).  

In summary, we found that L-DOPA-mediated regulation of the JNK pathway depends on cAMP-

mediated phosphorylation of DARPP-32, but does not require activation of NMDA receptors. These 

results suggest that JNK/cJun signaling may be implicated in cellular responses produced by activation of 

D1Rs in the PD state.  

 

JNK signaling contributes to D1R-mediated regulation of synaptic plasticity at cortical afferents to 

dSPN in PD mice. 
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Data so far point to dSPN acquiring a D1R-mediated, cell-type specific regulation of JNK signaling 

cascade upon dopamine depletion. Therefore, we tested the possibility that JNK activation can mediate 

some of the modulatory effects of dopamine at corticostriatal synapses on dSPN in the PD state. In dSPN, 

we have recently shown that HFS-LTD of cortical afferents is dependent on presynaptic adenosine A1 

receptors (A1R) and blunted upon the concurrent activation of postsynaptic D1R [26]. In light of this, we 

test whether pharmacological manipulations of the JNK signaling interfered with the dopaminergic 

suppression of HFS-LTD in dopamine depleted striata compared to control striata. In the ipsilateral DLS 

of mice with a 6-OHDA-lesion, we triggered HFS-LTD at cortical connections to dSPN (Fig. 5A, 6-

OHDAipsi, 66 ± 8 % of baseline, p < 0.05). LTD was abolished by bath application of the A1R 

antagonist DPCPX (500 nM) (Fig. 5A, 6-OHDAipsi + DPCPX, 93 ± 6 % of baseline, p > 0.05), as 

previously shown in naive mice [26]. Stimulation of the dopaminergic signaling by L-DOPA (10 M) or 

the direct pharmacological activation of the D1R subtype by the agonist SKF38393 (3 µM) significantly 

impaired LTD in 6-OHDA-lesion mice (Fig. 5B, 6-OHDAipsi + L-DOPA, 88 ± 4 % of baseline, p > 0.05; 

6-OHDAipsi + SKF, 91 ± 2 % of baseline, p > 0.05). We next tested the involvement of JNK in the 

synaptic effect produced by pharmacological activation of D1R in either 6-OHDA lesioned or naïve mice. 

In PD mice, we found that including the JNK inhibitor SP600125 (10 µM) in the postsynaptic dSPN 

during SKF38393 application prevented the synaptic effect of D1R activation (Fig. 6A, 6-OHDAipsi + 

SKF/SP600125, 71 ± 6 % of baseline, p < 0.05). We obtained similar results with the more selective and 

structurally unrelated JNK inhibitor JNK-IN-8 [32] (1 µM) (Fig. 6A, SKF/JNK-IN-8, 58 ± 1 % of 

baseline, p < 0.05). We also confirmed that the two inhibitors affected SKF38393-induced cJun 

phosphorylation in the striata of PD mice (Fig. 6B, top panels, SKF/SP600125, p = 0.0272; SKF/JNK-IN-

8, p < 0.0001), without interfering with P-ERK 1/2 phosphorylation (Fig. 6B, bottom panels, 

SKF/SP600125 and SKF/JNK-IN-8, p > 0.05). In naïve mice, SKF38393 still impaired LTD (Fig. 6C, 

naive, 63 ± 5 % of baseline, p < 0.05; naive + SKF, 89 ± 3 % of baseline, p > 0.05), as expected from our 

previous observations [26]. However, inhibition of JNK signaling by JNK-IN-8 failed to reduce the D1R-
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mediated synaptic effects (naive + SKF/JNK-IN-8, 90 ± 8 % of baseline, n = 6, p > 0.05; Fig. 6C). This is 

consistent with the lack of D1R-mediated JNK activation in the intact striatum (Fig. 3E-H). After 

recordings, dSPN cell identity was confirmed by immunostaining for substance P (positive) and A2A 

(negative) (data not shown) [25]  

Together, these results demonstrate that dopamine depletion confers the ability to D1R to signal by 

JNK, supporting a role for the dopaminergic regulation of the JNK signaling pathway in striatal  

dysfunction.  
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Discussion 

 

We have identified the JNK pathway as a signaling mechanism implicated in dopamine transmission, 

and provide evidence in an experimental model of PD that JNK is required for D1R-dependent 

modulation of corticostriatal synaptic plasticity. 

In PD, the loss of dopaminergic input to the basal ganglia causes the sensitization of D1R 

transmission, which potentiates the effects of dopaminergic drugs on dSPN [2,3,11,12,14,33]. In line with 

this, we show that the L-DOPA-induced increase in JNK and cJun phosphorylation occurs in combination 

with dopamine depletion. A similar mode of regulation has been described for other signaling pathways, 

including the cAMP cascade, ERK, and the mammalian target of rapamycin, which participate in the 

actions of drugs against Parkinson’s disease [9,11,13,14,34-36]. It should be noted that a previous study 

carried out in the rat 6-OHDA-lesion model of PD did not show any modifications in the state of 

phosphorylation of JNK, in response to L-DOPA [37]. This discrepancy may depend on species-specific 

differences (rat vs. mouse). Moreover, the present study shows a maximal phosphorylation of JNK at 15 

min following administration of L-DOPA. In contrast, in the previous study JNK phosphorylation was 

examined 45 min after L-DOPA, a time at which, in the rat, the effect of D1R activation on P-JNK may 

have subsided cf. [20]. 

One of the primary effects of stimulation of D1Rs in SPNs is the phosphorylation of DARPP-32 on 

Thr34, which is catalyzed by PKA. This phosphorylation converts DARPP-32 into an inhibitor of PP-1 

and plays a critical role in a wide range of responses to dopaminergic drugs [27]. Our results indicate that 

L-DOPA-induced JNK signaling requires the stimulation of the PKA/DARPP-32 signaling cascade, 

which leads to suppression of PP-1 activity. Thus, in T34A DARPP-32 mutant mice, lack of inhibitory 

control of PP-1 largely prevents L-DOPA-mediated increases in JNK phosphorylation. Previous work in 

human monocytes has pointed to PP-2A as the main phosphatase involved in the regulation of JNK 
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during acute inflammation [38]. The present data suggest that, in the brain, PP-1 is an additional 

phosphatase implicated in dopamine-mediated control of JNK signaling.  

The effect of DARPP-32 inactivation on the phosphorylation of cJun is less prominent than that 

observed on JNK. This suggests that following D1R sensitization, abnormal activation of PKA, which is 

upstream of DARPP-32, may be sufficient to increase cJun phosphorylation independently of parallel 

inhibition of PP-1. It is also possible that the residual phosphorylation of JNK and Ras/ERK [9] still 

observed after genetic inactivation of DARPP-32 may concur to maintain cJun in a partially active state. 

Future studies will be needed to examine these possibilities.     

Stimulation of mitogen-activated protein kinases typically depends on NMDA receptor transmission. 

For instance, increased ERK phosphorylation in response to dopaminergic drugs, such as cocaine and 

amphetamine, is reduced by blockade of NMDA receptors [29,30]. NMDA receptors have also been 

implicated in stress-induced activation of JNK [31]. In contrast to these observations, the L-DOPA-

induced increase in JNK and cJun phosphorylation in the dopamine-depleted striatum is unaffected by the 

NMDA receptor antagonist, MK-801. These results suggest that in PD, the loss of dopamine input to the 

striatum produces a sensitization that allows D1Rs to promote JNK/cJun signaling independently of 

NMDA receptor transmission.   

The D1R-driven stimulation of JNK occurs specifically in dSPN. Activation of these neurons 

suppresses the inhibitory control exerted by the basal ganglia on thalamo-cortical neurons, thus promoting 

motor activity [39-41]. In dSPN, dopamine via D1Rs activates postsynaptic signaling cascades (e.g. ERK 

cascade) that increase synaptic strength [26,42]. This postsynaptic potentiation counteracts the 

presynaptic inhibition of glutamate release by adenosine A1 receptors, thereby creating a dynamic 

balance between LTD and LTP mechanisms [26]. The present results show that, in PD mice, JNK 

activation contributes to the D1R-mediated effects at corticostriatal synapses on dSPN, pointing to a role 

for JNK signaling in the regulation of striatal synaptic plasticity. Notably, this regulation is absent in 

naïve mice and occurs only in a PD model, characterized by the loss of dopaminergic input to the 
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striatum. Dopamine depletion has been linked to the development of sensitization at D1R. The present 

study indicates that this pathological condition acts as a functional switch by conferring on JNK abnormal 

signaling properties, potentially linked to the actions of anti-parkinsonian medications.  

D1R sensitization and loss of synaptic downscaling are regarded as causal factors in the development 

of aberrant motor responses produced by L-DOPA, such as dyskinesia [3,43,44]. Therefore, the 

attenuation of D1R transmission produced by JNK inhibitors and their permissive action on LTD may 

help to control this serious complication. In line with this possibility, it has been shown that 

overexpression in dSPN of cJun, a truncated form of cJun which lacks transcriptional activity, attenuates 

L-DOPA-induced dyskinesia [45]. Recent studies show that administration of L-DOPA increases spine 

volume and postsynaptic density (PSD) length, in the dSPN of dyskinetic mice [46,47]. Interestingly, 

D1R-mediated activation of JNK may participate in this phenomenon, since JNK has been shown to 

increase the synaptic content of PSD-95 [48]. 

In conclusion, this study supports the involvement of the JNK signaling pathway in dopamine 

transmission. In particular, we show that depletion of dopamine, a pathological hallmark of PD, confers 

on dopaminergic drugs the ability to activate JNK. This effect occurs in a well-defined population of 

SPNs and is causally linked to synaptic responses produced by D1R activation. These findings shed new 

light on the mechanisms by which anti-Parkinson’s drugs modify basal ganglia transmission and provide 

critical information for the development of novel approaches for the treatment of PD. 
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Legends to the figures 

 

Fig 1. L-DOPA triggers JNK and cJun phosphorylation in SPNs of hemiparkinsonian mice.  

Mice with a unilateral injection of 6-OHDA in the MFB were treated with either saline or L-DOPA (10 

mg/kg) and perfused after 15, 30, 60 or 120 min. (A) Coronal section of mouse brain immunostained for 

TH [AP +0.26 mm from the bregma [49]]. Note the loss of dopaminergic innervation, assessed as lack of 

TH-immunoreactivity, produced by 6-OHDA in the striatum ipsilateral to the lesion. Squares indicate the 

regions of the DLS selected for the immunohistochemical analysis. Scale bar, 500 m. (B,C)  Confocal 

images (20X) showing P-JNK (B) and P-cJun (C) immunoreactive cells in the striata contralateral 

(control) or ipsilateral (lesion) to the side of the 6-OHDA lesion in saline and L-DOPA treated mice at 30 

min. Scale bar, 50 m. (D,E) Quantification of P-JNK (D) and P-cJun (E) positive cells/100 mm
2 

. Bar 

diagrams (left panels) show the increase induced by the lesion 30 min after L-DOPA; line graphs (right 

panels) show the time course of the effect of L-DOPA. Data are expressed as mean  S.E.M. 2W 

ANOVA indicated a significant lesion x treatment interaction (F1,8 = 95.74, p < 0.0001 for P-JNK; F1,8 = 

185.7, p < 0.0001 for P-cJun; n = 3 mice/group) and lesion x time interaction (F3,16 = 15.92, p < 0.0001 

for P-JNK; F3,16 = 6.629, p = 0.004 for P-cJun; n = 3 mice /group). * p < 0.0001 for 6-OHDA lesion 

treated with L-DOPA vs. saline-Control, saline-6-OHDA and L-DOPA-Control groups (Tukey). 

 

Fig 2. Activation of JNK signaling occurs in D1R-expressing SPNs.  

Drd1a-EGFP and Drd2a-EGFP mice with a unilateral injection of 6-OHDA in the MFB were treated 

with L-DOPA (10 mg/kg) and perfused after 30 min. (A,B) Confocal images (20X) of control and 6-

OHDA-lesion striata double-stained for EGFP and P-JNK (A), or EGFP and P-cJun (B). Note the co-

localization of P-JNK and P-cJun with EGFP in Drd1a-EGFP mice (F2,2 = 118.9, p = 0.0005 for P-JNK 

and F2,2 = 1194 p = 0.0012 for P-cJun, t-test; n = 3 mice) and the distinct fluorescent signals in Drd2a-

EGFP mice (F2,2 = 804.3, p = 0.0002 for P-JNK and F2,2 = 1230, p = 0.0007 for P-cJun, t-test; n = 3 mice). 
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Scale bar, 50 m. Pie charts show the percentage of cells in which EGFP-immunoreactivity (green) 

colocalizes (orange) with P-JNK (A) and P-cJun (B) (red). (C) Confocal images (40 and 63X) from a 

Drd2a-EGFP mouse, showing triple staining for EGFP (green), P-JNK (blue) and P-cJun (red) in the 

striatum ipsilateral to the 6-OHDA-lesion. The inset shows co-localization (purple) between P-JNK and 

P-cJun immunoreactivity in double-labeled cells devoid of EGFP fluorescent signal (i.e. dSPN). Scale 

bar, 20 m. 

 

Fig 3. Phosphorylation of JNK and cJun is prevented by SCH23390 and induced by SKF38393 

treatments in the dopamine depleted striatum.  

Mice with a unilateral injection of 6-OHDA in the MFB were either treated with SCH23390 (0.2 mg/Kg; 

15 min prior to L-DOPA) and perfused 30 min after L-DOPA administration or treated with SKF38393 

(10 mg/Kg) and perfused after 30 min. (A,C) Confocal images (20X) showing P-JNK (A,E) and P-cJun 

(C,G) in the striata contralateral (control) or ipsilateral (lesion) to the side of the 6-OHDA lesion. 

(B,D,F,H) Bar diagrams representing the number of P-JNK (B,F) and P-cJun (D,H) immunoreactive 

cells/100 mm
2
 in the control and 6-OHDA striata of mice treated with L-DOPA (B,D) or SKF38393 

(F,H) and in the 6-OHDA striatum of mice treated with L-DOPA + SCH23390 (B,D). Scale bar, 50 m. 

Data are expressed as mean  S.E.M. 2W ANOVA indicated significant lesion x treatment interaction 

(F1,8 = 46.94, p = 0.0001 for P-JNK; F1,12 = 8.852, p = 0.0116 for P-cJun; n = 3 mice/group). t-test 

indicated significant difference between 6-OHDA lesion and Control treated with SKF38393 (F2,2 = 1381, 

p < 0.0001 for P-JNK; F2,2 = 1630, p = 0.0001 for P-cJun; n = 3 mice/group). * p < 0.001 for 6-OHDA 

lesion treated with L-DOPA vs. Control treated with L-DOPA (Tukey); † p = 0.0055 and †† p < 0.0001 

for 6-OHDA lesion treated with L-DOPA + SCH23390 vs. 6-OHDA lesion treated with L-DOPA 

(Tukey). # p  0.0001 (t-test). 
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Fig 4. L-DOPA-mediated regulation of JNK depends on cAMP/DARPP-32 signaling and does not 

require NMDA receptor transmission. (A-D) Wildtype and DARPP-32 T34A mutant mice with a 

unilateral injection of 6-OHDA in the MFB were treated with L-DOPA (10 mg/kg) and perfused after 30 

min. (E-H) Mice with a unilateral 6-OHDA lesion in the MFB were treated with MK-801 (0.15 mg/Kg; 

30 min prior to L-DOPA) and perfused 30 min after administration of L-DOPA. (A,C,E,G) Confocal 

images (20X) showing P-JNK (A) and P-cJun (C) immunoreactive cells in the striata contralateral 

(control) or ipsilateral (lesion) to the side of the 6-OHDA lesion. Scale bar, 50 m. (B,D) Bar diagrams 

representing the number of P-JNK (B) and P-cJun (D) immunoreactive cells/100 mm
2
. Note the reduction 

of the effect of L-DOPA in the 6-OHDA-lesion striatum of DARPP-32 T34A mutant mice compared to 

wildtype mice. Data are expressed as means  S.E.M. 2W ANOVA indicated significant lesion x 

genotype interaction (F1,12 = 53.92, p < 0.0001 for P-JNK; F1,11 = 10.02 p = 0.009 for P-cJun; n = 4 

mice/group). (F,H) Bar diagrams representing the number of P-JNK (F) and P-cJun (H) immunoreactive 

cells/100 mm
2
 in the control and 6-OHDA striata of mice treated with L-DOPA and in the 6-OHDA 

striatum of mice treated with L-DOPA + MK801. Data are expressed as mean ± S.E.M. 2W ANOVA 

indicated significant effect of the lesion (F1,8 = 204.1, p < 0.0001 for P-JNK; F1,8 = 207.8, p < 0.0001 for 

P-cJun; n = 3 mice/group) and no significant lesion x treatment interaction (p > 0.05 for both P-JNK and 

P-cJun) * p < 0.001 for 6-OHDA lesion wildtype treated with L-DOPA vs. Control wildtype treated with 

L-DOPA (Tukey); † p = 0.005 and †† p < 0.0001 for 6-OHDA lesion DARPP-32 T34A treated with L-

DOPA vs. 6-OHDA lesion wildtype treated with L-DOPA (Tukey). 

 

Fig 5. D1R-mediated modulation of long-term synaptic depression (LTD) at cortical connections to 

dSPN of 6-OHDA-lesioned mice.  

(A) (Top left) Experimental configuration in horizontal brain slices containing the dorsolateral striatum. 

(Bottom Left) High frequency stimulation (HFS) of Layer 5 cortical afferents resulted in LTD of 

excitatory postsynaptic responses in dSPN 6-OHDA mice (1W RM ANOVA, F7,22 = 15, p = 0.0003, n = 
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8 slices from 6 mice; p < 0.05, Tukey). This form of HFS-LTD was blocked by bath application of the 

A1R antagonists DPCPX (500 nM, light blue bar) (1W RM ANOVA, F4,22 = 0.5, p = 0.6, n = 5 slices 

from 4 mice; dSPN 6-OHDAipsi vs. dSPN 6-OHDAipsi + DPCPX, p = 0.04, t-test). (B) Stimulation of 

dSPN with L-DOPA (10 M; grey bar) or with the D1R agonist SKF38393 (3 M; black bar) negatively 

modulated HFS-LTD at dSPN 6-OHDA synapses (1W RM ANOVA, dSPN 6-OHDAipsi + L-DOPA, F4,22 

= 2, p = 0.2, n = 5 slices from 4 mice; dSPN 6-OHDAips + SKF3839, F5,22 = 5, p = 0.02, n = 6 slices from 

5 mice; p > 0.05, Tukey; 1W ANOVA, F2,16 = 6, p = 0.02; dSPN 6-OHDAipsi vs. dSPN 6-OHDAipsi + L-

DOPA, p = 0.04, Dunnet; dSPN 6-OHDAipsi vs. dSPN 6-OHDAipsi + SKF3839, p = 0.01, Dunnet). Black 

line in (B) indicates HFS-LTD in dSPN 6-OHDA mice, as reported in (A); (A,B) (Top right) Schematic 

of proposed signaling elements targeted by the defined antagonist. (Bottom left) Data are presented as 

normalized EPSP amplitude and normalized Rinp (mean ± S.E.M). (Bottom right) Plot of ratios of synaptic 

responses after (a) and before (b) the HFS. Insets: (left) superimposed averaged recordings (ten traces) 

before (black line) and after (blue line) the delivery of the HFS protocol (blue vertical bar). * p < 0.05 (t-

test/Dunnet). 

 

Fig 6. JNK signaling activation mediates the synaptic effect of D1R activation in PD but not in 

control mice. 

(A) In PD mice, D1R-mediated synaptic inhibition of LTD was averted by including the JNK inhibitors 

SP600125 (10 M) or JNK-IN-8 (1 M) in the postsynaptic dSPN (1W RM ANOVA, dSPN 6-OHDAipsi 

+ SKF38393/SP600125, F5,22 = 15, p = 0.0001, n = 6 slices from 5 mice; p < 0.05, Tukey; dSPN 6-

OHDAipsi + SKF38393/JNK-IN-8, F4,22 = 5, p < 0.0001, n = 5 slices from 4 mice; p < 0.05, Tukey; 1W 

ANOVA, F14,2 = 9, p = 0.002; p < 0.01; dSPN 6-OHDAipsi + SKF3839 vs. dSPN 6-OHDAipsi + 

SKF38393/SP600125, p = 0.04, Dunnet; dSPN 6-OHDAipsi + SKF3839 vs. dSPN 6-OHDAipsi + 

SKF38393/JNK-IN-8, p = 0.001, Dunnet). Blue line indicates plasticity in dSPN 6-OHDA mice upon 

SKF38393 application as reported in Fig. 5A. (B) Striatal slices from 6-OHDA-lesion mice were 
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incubated for 5 min with vehicle, SKF38393 (3 µM), or SKF38393 in the presence of SP600125 (20 M) 

or JNK-IN-8 (10 M). P-cJun and P-ERK 1/2 were determined by Western blotting (25 and 10 g of 

protein were loaded, respectively). Note the reduction of SKF38393-induced P-cJun produced by the two 

JNK inhibitors (top panels). In contrast, SP600125 and JNK-IN-8 did not affect the increase in P-ERK 

produced by SKF38393 (bottom panels). Summary of data were calculated as percentage of control and 

are represented as mean  S.E.M. 1W ANOVA indicated significant effect of the treatment for both P-

cJun (F3,16 = 15.22, p < 0.0001, n = 5 slices from 5 mice) and P-ERK 1/2 (F3,16 = 18.23, p < 0.0001, n = 5 

slices from mice). (C) In naïve mice, the JNK inhibitor JNK-IN-8 (1 M) did not prevent SKF38393 from 

reducing HFS-LTD (1W RM ANOVA, dSPN Naive, F5,22 = 10, p = 0.0005, n = 6 from 5 mice; p < 0.05, 

Tukey; dSPN Naive + SKF38393, F5,22 = 1.7, p = 0.2, n = 6 slices from 6 mice; dSPN Naive + 

SKF38393/JNK-IN-8, F5,22 =1.2, p = 0.3, n = 6 slices from 4 mice; 1W ANOVA, F2,15 = 7, p = 0.008; 

dSPN Naive vs. dSPN Naive + SKF38393, p = 0.02, Dunnet; dSPN Naive + SKF3839 vs. dSPN Naïve + 

SKF38393/JNK-IN-8, p = 0.01, Dunnet). (A,C) (Bottom left) Data are presented as normalized EPSP 

amplitude and normalized Rinp (mean ± S.E.M). (Bottom right) Plot of ratios of synaptic responses after 

(a) and before (b) the HFS. (Top left) Superimposed averaged recordings (ten traces) before (black line) 

and after (blue line) the delivery of the HFS protocol (blue vertical bar). (Top right) schematic of 

proposed signaling elements targeted by the defined agonists or inhibitors. * p < 0.05 (Dunnet); ** p < 

0.01 (Dunnet); # p < 0.01 for SKF38393 vs. Vehicle (Tukey); † p = 0.02 for SKF38393 vs. SKF38393 + 

SP600125 (Tukey); †† p < 0.0001 for SKF38393 vs. SKF38393 + JNK-IN-8 (Tukey). 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Highlights 

 

 Administration of L-DOPA promotes JNK signaling in a mouse model of Parkinson’s disease 

 This effect depends on D1R-mediated activation of DARPP-32 and occurs selectively in dSPNs 

 JNK is required for D1R-mediated regulation of synaptic plasticity in experimental parkinsonism 

ACCEPTED MANUSCRIPT


