31 research outputs found

    Integrated intracellular organization and reorganization of the human stem cell

    Get PDF
    No abstracts

    An Experimental and Computational Study of the Effect of ActA Polarity on the Speed of Listeria monocytogenes Actin-based Motility

    Get PDF
    Listeria monocytogenes is a pathogenic bacterium that moves within infected cells and spreads directly between cells by harnessing the cell's dendritic actin machinery. This motility is dependent on expression of a single bacterial surface protein, ActA, a constitutively active Arp2,3 activator, and has been widely studied as a biochemical and biophysical model system for actin-based motility. Dendritic actin network dynamics are important for cell processes including eukaryotic cell motility, cytokinesis, and endocytosis. Here we experimentally altered the degree of ActA polarity on a population of bacteria and made use of an ActA-RFP fusion to determine the relationship between ActA distribution and speed of bacterial motion. We found a positive linear relationship for both ActA intensity and polarity with speed. We explored the underlying mechanisms of this dependence with two distinctly different quantitative models: a detailed agent-based model in which each actin filament and branched network is explicitly simulated, and a three-state continuum model that describes a simplified relationship between bacterial speed and barbed-end actin populations. In silico bacterial motility required a cooperative restraining mechanism to reconstitute our observed speed-polarity relationship, suggesting that kinetic friction between actin filaments and the bacterial surface, a restraining force previously neglected in motility models, is important in determining the effect of ActA polarity on bacterial motility. The continuum model was less restrictive, requiring only a filament number-dependent restraining mechanism to reproduce our experimental observations. However, seemingly rational assumptions in the continuum model, e.g. an average propulsive force per filament, were invalidated by further analysis with the agent-based model. We found that the average contribution to motility from side-interacting filaments was actually a function of the ActA distribution. This ActA-dependence would be difficult to intuit but emerges naturally from the nanoscale interactions in the agent-based representation

    Mechanism of polarization of Listeria monocytogenes surface protein ActA

    Get PDF
    The polar distribution of the ActA protein on the surface of the Gram-positive intracellular bacterial pathogen, Listeria monocytogenes, is required for bacterial actin-based motility and successful infection. ActA spans both the bacterial membrane and the peptidoglycan cell wall. We have directly examined the de novo ActA polarization process in vitro by using an ActA–RFP (red fluorescent protein) fusion. After induction of expression, ActA initially appeared at distinct sites along the sides of bacteria and was then redistributed over the entire cylindrical cell body through helical cell wall growth. The accumulation of ActA at the bacterial poles displayed slower kinetics, occurring over several bacterial generations. ActA accumulated more efficiently at younger, less inert poles, and proper polarization required an optimal balance between protein secretion and bacterial growth rates. Within infected host cells, younger generations of L. monocytogenes initiated motility more quickly than older ones, consistent with our in vitro observations of de novo ActA polarization. We propose a model in which the polarization of ActA, and possibly other Gram-positive cell wall-associated proteins, may be a direct consequence of the differential cell wall growth rates along the bacterium and dependent on the relative rates of protein secretion, protein degradation and bacterial growth

    Mitochondrial Network Size Scaling in Budding Yeast

    Get PDF
    Mitochondria must grow with the growing cell to ensure proper cellular physiology and inheritance upon division. We measured the physical size of mitochondrial networks in budding yeast and found that mitochondrial network size increased with increasing cell size and that this scaling relation occurred primarily in the bud. The mitochondria-to-cell size ratio continually decreased in aging mothers over successive generations. However, regardless of the mother's age or mitochondrial content, all buds attained the same average ratio. Thus, yeast populations achieve a stable scaling relation between mitochondrial content and cell size despite asymmetry in inheritance.Sandler Postdoctoral FellowshipSandler Postdoctoral FellowshipHerbert Boyer Junior Faculty Endowed Chair AwardHerbert Boyer Junior Faculty Endowed Chair AwardNIHNIH [R01GM097017, R01GM070808, R01GM026259, P50Gm081879, 5RO1GM097213-02]NIH National Research Service Award fellowshipNIH National Research Service Award fellowshipFundacao de Amparo a Pesquisa do Estado de Sao PauloFundacao de Amparo a Pesquisa do Estado de Sao Paulo [05/00587-5, 07/50882-9]Conselho Nacional de Desenvolvimento Cientifico e Tecnologico [301303/06-1]Conselho Nacional de Desenvolvimento Cientifico e TecnologicoPackard FellowshipPackard FellowshipChina Scholarship Council (CSC) scholarshipChina Scholarship Council (CSC) scholarshipBoyer Postdoctoral FellowshipBoyer Postdoctoral Fellowshi

    Understanding metric-related pitfalls in image analysis validation

    Get PDF
    Validation metrics are key for the reliable tracking of scientific progress and for bridging the current chasm between artificial intelligence (AI) research and its translation into practice. However, increasing evidence shows that particularly in image analysis, metrics are often chosen inadequately in relation to the underlying research problem. This could be attributed to a lack of accessibility of metric-related knowledge: While taking into account the individual strengths, weaknesses, and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers. Based on a multi-stage Delphi process conducted by a multidisciplinary expert consortium as well as extensive community feedback, the present work provides the first reliable and comprehensive common point of access to information on pitfalls related to validation metrics in image analysis. Focusing on biomedical image analysis but with the potential of transfer to other fields, the addressed pitfalls generalize across application domains and are categorized according to a newly created, domain-agnostic taxonomy. To facilitate comprehension, illustrations and specific examples accompany each pitfall. As a structured body of information accessible to researchers of all levels of expertise, this work enhances global comprehension of a key topic in image analysis validation.Comment: Shared first authors: Annika Reinke, Minu D. Tizabi; shared senior authors: Paul F. J\"ager, Lena Maier-Hei

    Mitochondrial network morphology: building an integrative, geometrical view

    Get PDF
    Abstract The morphology of mitochondrial networks is complex and highly varied, yet vital to cell function. The first step toward an integrative understanding of how mitochondrial morphology is generated and regulated is to define the interdependent geometrical features and their dynamics that together generate the morphology of a mitochondrial network within a cell. Distinct aspects of the size, shape, position, and dynamics of mitochondrial networks are described and examples of how these features depend on one another discussed

    Oral infection with signature-tagged Listeria monocytogenes reveals organ-specific growth and dissemination routes in guinea pigs.

    No full text
    Listeria monocytogenes causes a serious food-borne disease due to its ability to spread from the intestine to other organs, a process that is poorly understood. In this study we used 20 signature-tagged wild-type clones of L. monocytogenes in guinea pigs in combination with extensive quantitative data analysis to gain insight into extraintestinal dissemination. We show that L. monocytogenes colonized the liver in all asymptomatic animals. Spread to the liver occurred as early as 4 h after ingestion via a direct pathway from the intestine to the liver. This direct pathway contributed significantly to the bacterial load in the liver and was followed by a second wave of dissemination via the mesenteric lymph nodes (indirect pathway). Furthermore, bacteria were eliminated in the liver, whereas small intestinal villi provided a niche for bacterial replication, indicating organ-specific differences in net bacterial growth. Bacteria were shed back from intestinal villi into the small intestinal lumen and reinfected the Peyer's patches. Together, these results support a novel dissemination model where L. monocytogenes replicates in intestinal villi, is shed into the lumen, and reinfects intestinal immune cells that traffic to liver and mesenteric lymph nodes, a process that occurs even during asymptomatic colonization
    corecore