37 research outputs found
Bag-of-Features Image Indexing and Classification in Microsoft SQL Server Relational Database
This paper presents a novel relational database architecture aimed to visual
objects classification and retrieval. The framework is based on the
bag-of-features image representation model combined with the Support Vector
Machine classification and is integrated in a Microsoft SQL Server database.Comment: 2015 IEEE 2nd International Conference on Cybernetics (CYBCONF),
Gdynia, Poland, 24-26 June 201
Efficient image retrieval by fuzzy rules from boosting and metaheuristic
Fast content-based image retrieval is still a challenge for computer systems. We present a novel method aimed at classifying images by fuzzy rules and local image features. The fuzzy rule base is generated in the first stage by a boosting procedure. Boosting meta-learning is used to find the most representative local features. We briefly explore the utilization of metaheuristic algorithms for the various tasks of fuzzy systems optimization. We also provide a comprehensive description of the current best-performing DISH algorithm, which represents a powerful version of the differential evolution algorithm with effective embedded mechanisms for stronger exploration and preservation of the population diversity, designed for higher dimensional and complex optimization tasks. The algorithm is used to fine-tune the fuzzy rule base. The fuzzy rules can also be used to create a database index to retrieve images similar to the query image fast. The proposed approach is tested on a state-of-the-art image dataset and compared with the bag-of-features image representation model combined with the Support Vector Machine classification. The novel method gives a better classification accuracy, and the time of the training and testing process is significantly shorter. © 2020 Marcin Korytkowski et al., published by Sciendo.program of the Polish Minister of Science and Higher Education under the name "Regional Initiative of Excellence" in the years 2019-2022 [020/RID/2018/19
Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study
Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation
Remarks on Speeding up the Digital Camera Identification using Convolutional Neural Networks
In this paper, we consider the issue of digital camera identification based on images. This topic matches the area of digital forensics. The problem is well known in the literature and many algorithms based on camera’s fingerprint have been proposed. In this paper, we discuss the digital camera identification based on convolutional neural networks (CNN). CNNs are state-of-the-art method in computer vision and are widely utilized in many applications. Our goal is to find out whether it is possible to speed up the process of learning the networks by the images. We conduct a set of representative experiments which show that replacing the ReLU with SELU activation function and adjusting the network’s hyperparamethers (e.g. learning rate) may have a significant impact on reduction time of learning. We also consider using the dropout layer. The experiments are held on representative image dataset, consisting of many images coming from modern cameras and show effectiveness of our propositions
HEMIGEN: Human Embryo Image Generator Based on Generative Adversarial Networks
We propose a method for generating the synthetic images of human embryo cells that could later be used for classification, analysis, and training, thus resulting in the creation of new synthetic image datasets for research areas lacking real-world data. Our focus was not only to generate the generic image of a cell such, but to make sure that it has all necessary attributes of a real cell image to provide a fully realistic synthetic version. We use human embryo images obtained during cell development processes for training a deep neural network (DNN). The proposed algorithm used generative adversarial network (GAN) to generate one-, two-, and four-cell stage images. We achieved a misclassification rate of 12.3% for the generated images, while the expert evaluation showed the true recognition rate (TRR) of 80.00% (for four-cell images), 86.8% (for two-cell images), and 96.2% (for one-cell images). Texture-based comparison using the Haralick features showed that there is no statistically (using the Student’s t-test) significant (p < 0.01) differences between the real and synthetic embryo images except for the sum of variance (for one-cell and four-cell images), and variance and sum of average (for two-cell images) features. The obtained synthetic images can be later adapted to facilitate the development, training, and evaluation of new algorithms for embryo image processing tasks
Unified End-to-End YOLOv5-HR-TCM Framework for Automatic 2D/3D Human Pose Estimation for Real-Time Applications
Three-dimensional human pose estimation is widely applied in sports, robotics, and healthcare. In the past five years, the number of CNN-based studies for 3D human pose estimation has been numerous and has yielded impressive results. However, studies often focus only on improving the accuracy of the estimation results. In this paper, we propose a fast, unified end-to-end model for estimating 3D human pose, called YOLOv5-HR-TCM (YOLOv5-HRet-Temporal Convolution Model). Our proposed model is based on the 2D to 3D lifting approach for 3D human pose estimation while taking care of each step in the estimation process, such as person detection, 2D human pose estimation, and 3D human pose estimation. The proposed model is a combination of best practices at each stage. Our proposed model is evaluated on the Human 3.6M dataset and compared with other methods at each step. The method achieves high accuracy, not sacrificing processing speed. The estimated time of the whole process is 3.146 FPS on a low-end computer. In particular, we propose a sports scoring application based on the deviation angle between the estimated 3D human posture and the standard (reference) origin. The average deviation angle evaluated on the Human 3.6M dataset (Protocol #1–Pro #1) is 8.2 degrees
Improved Fisher MAP filter for despeckling of high-resolution SAR images based on structural information detection
Fisher distribution is a popular model for highresolution (HR) synthetic aperture radar (SAR) images due to its high-peaked and heavy-tailed characteristics as well as its theoretical justification and mathematical tractability. Based on the Fisher modeling of SAR images, the maximum a posteriori (MAP) filter is suggested. In the Fisher model, the parameter of image looks is thought to be fixed to correspond to the formation mechanism of multi-look intensity images, and the other two parameters are accur ately assessed from the SAR image based on second-kind statistics. To improve the Fisher MAP filter especially in the aspect of speckle suppression, the Fisher MAP filter based on recognition of structural information is created using point target detection, the adaptive windowing method, homogeneous region detection, and selection of most homogeneous sub-window. The experiments on despeckling of HR SAR images demonstrate that the improved Fisher MAP filter based on structural information detection can suppress speckle in homogenous and edge regions, and effectively preserve fine details, edges, and point targetsTaikomosios informatikos katedraVytauto Didžiojo universiteta
Efficient image retrieval by fuzzy rules from boosting and metaheuristic
Fast content-based image retrieval is still a challenge for computer systems. We present
a novel method aimed at classifying images by fuzzy rules and local image features.
The fuzzy rule base is generated in the first stage by a boosting procedure. Boosting
meta-learning is used to find the most representative local features. We briefly explore
the utilization of metaheuristic algorithms for the various tasks of fuzzy systems optimization. We also provide a comprehensive description of the current best-performing
DISH algorithm, which represents a powerful version of the differential evolution algorithm with effective embedded mechanisms for stronger exploration and preservation
of the population diversity, designed for higher dimensional and complex optimization
tasks. The algorithm is used to fine-tune the fuzzy rule base. The fuzzy rules can also
be used to create a database index to retrieve images similar to the query image fast. The
proposed approach is tested on a state-of-the-art image dataset and compared with the
bag-of-features image representation model combined with the Support Vector Machine
classification. The novel method gives a better classification accuracy, and the time of the
training and testing process is significantly shorter
Prediction of streamflow based on dynamic sliding window LSTM
Article no. 3032The streamflow of the upper reaches of the Yangtze River exhibits different timing and periodicity characteristics in different quarters and months of the year, which makes it difficult to predict. Existing sliding window-based methods usually use a fixed-size window, for which the window size selection is random, resulting in large errors. This paper proposes a dynamic sliding window method that reflects the different timing and periodicity characteristics of the streamflow in different months of the year. Multiple datasets of different months are generated using a dynamic window at first, then the long-short term memory (LSTM) is used to select the optimal window, and finally, the dataset of the optimal window size is used for verification. The proposed method was tested using the hydrological data of Zhutuo Hydrological Station (China). A comparison between the flow prediction data and the measured data shows that the prediction method based on a dynamic sliding window LSTM is more accurate by 8.63% and 3.85% than the prediction method based on fixed window LSTM and the dynamic sliding window back-propagation neural network, respectively. This method can be generally used for the time series data prediction with different periodic characteristicsTaikomosios informatikos katedraVytauto Didžiojo universiteta