35 research outputs found

    Decay spectroscopy of Cd-129

    Get PDF
    Excited states of 129^{129}In populated following the β\beta-decay of 129^{129}Cd were experimentally studied with the GRIFFIN spectrometer at the ISAC facility of TRIUMF, Canada. A 480-MeV proton beam was impinged on a uranium carbide target and 129^{129}Cd was extracted using the Ion Guide Laser Ion Source (IG-LIS). β\beta- and γ\gamma-rays following the decay of 129^{129}Cd were detected with the GRIFFIN spectrometer comprising the plastic scintillator SCEPTAR and 16 high-purity germanium (HPGe) clover-type detectors. %, along with the β\beta-particles were detected with SCEPTAR. From the β\beta-γ\gamma-γ\gamma coincidence analysis, 32 new transitions and 7 new excited states were established, expanding the previously known level scheme of 129^{129}In. The logft\log ft values deduced from the β\beta-feeding intensities suggest that some of the high-lying states were populated by the ν0g7/2π0g9/2\nu 0 g_{7/2} \rightarrow \pi 0 g_{9/2} allowed Gamow-Teller (GT) transition, which indicates that the allowed GT transition is more dominant in the 129^{129}Cd decay than previously reported. Observation of fragmented Gamow-Teller strengths is consistent with theoretical calculations.Comment: 13 pages, 9 figures, to be published in Physical Review

    Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukaemia

    Get PDF
    Chromosomal rearrangements are initiating events in acute lymphoblastic leukaemia (ALL). Here using RNA sequencing of 560 ALL cases, we identify rearrangements between MEF2D (myocyte enhancer factor 2D) and five genes (BCL9, CSF1R, DAZAP1, HNRNPUL1 and SS18) in 22 B progenitor ALL (B-ALL) cases with a distinct gene expression profile, the most common of which is MEF2D-BCL9. Examination of an extended cohort of 1,164 B-ALL cases identified 30 cases with MEF2D rearrangements, which include an additional fusion partner, FOXJ2; thus, MEF2D-rearranged cases comprise 5.3% of cases lacking recurring alterations. MEF2D-rearranged ALL is characterized by a distinct immunophenotype, DNA copy number alterations at the rearrangement sites, older diagnosis age and poor outcome. The rearrangements result in enhanced MEF2D transcriptional activity, lymphoid transformation, activation of HDAC9 expression and sensitive to histone deacetylase inhibitor treatment. Thus, MEF2D-rearranged ALL represents a distinct form of high-risk leukaemia, for which new therapeutic approaches should be considered

    High Electrocatalytic Activity of Vertically Aligned Single-Walled Carbon Nanotubes towards Sulfide Redox Shuttles

    Get PDF
    Vertically aligned single-walled carbon nanotubes (VASWCNTs) have been successfully transferred onto transparent conducting oxide glass and implemented as efficient low-cost, platinum-free counter electrode in sulfide –mediated dye-sensitized solar cells (DSCs), featuring notably improved electrocatalytic activity toward thiolate/disulfide redox shuttle over conventional Pt counter electrodes. Impressively, device with VASWCNTs counter electrode demonstrates a high fill factor of 0.68 and power conversion efficiency up to 5.25%, which is significantly higher than 0.56 and 3.49% for that with a conventional Pt electrode. Moreover, VASWCNTs counter electrode produces a charge transfer resistance of only 21.22 Ω towards aqueous polysulfide electrolyte commonly applied in quantum dots-sensitized solar cells (QDSCs), which is several orders of magnitude lower than that of a typical Pt electrode. Therefore, VASWCNTs counter electrodes are believed to be a versatile candidate for further improvement of the power conversion efficiency of other iodine-free redox couple based DSCs and polysulfide electrolyte based QDSCs

    Valorisation of Biowastes for the Production of Green Materials Using Chemical Methods

    Get PDF
    With crude oil reserves dwindling, the hunt for a sustainable alternative feedstock for fuels and materials for our society continues to expand. The biorefinery concept has enjoyed both a surge in popularity and also vocal opposition to the idea of diverting food-grade land and crops for this purpose. The idea of using the inevitable wastes arising from biomass processing, particularly farming and food production, is, therefore, gaining more attention as the feedstock for the biorefinery. For the three main components of biomass—carbohydrates, lipids, and proteins—there are long-established processes for using some of these by-products. However, the recent advances in chemical technologies are expanding both the feedstocks available for processing and the products that be obtained. Herein, this review presents some of the more recent developments in processing these molecules for green materials, as well as case studies that bring these technologies and materials together into final products for applied usage

    High-precision half-life determination of 14^{14}O via direct ββ counting

    No full text
    The half-life of the superallowed Fermi β+\beta^+ emitter 14^{14}O was determined to high precision via a direct β\beta counting experiment performed at the Isotope Separator and Accelerator (ISAC) facility at TRIUMF. The result, T1/2T_{1/2}(14^{14}O) = 70619.2(76) ms, is consistent with, but is more precise than, the world average obtained from 11 previous measurements. Combining the 14^{14}O half-life deduced in the present work with the previous most precise measurements of this quantity leads to a reduction in the overall uncertainty, by nearly a factor of 2. The new world average is T1/2T_{1/2}(14^{14}O) = 70619.6(63) ms with a reduced χ2\chi^2 value of 0.87 obtained from 8 degrees of freedom
    corecore