941 research outputs found

    Sustainable Bus Stop: Design & Pre-Construction

    Get PDF
    The objective of this project is to design and prepare to build a sustainable bus stop for the City of San Luis Obispo (SLO). Compiled are pre-construction plans and documents for delivery of a sustainable bus stop. All pre-construction services include: project budget/estimates, construction plans and specifications including architectural and electrical plans, timeline/schedule, and materials lists. With a strong focus on sustainability, the design incorporates the use of photovoltaic panels as a form of renewable energy to power features of the sheltered bus stop. This includes a light fixture and a pump to use collected rainwater to nourish native vegetation in a planter box. The budget was to be under $10,000 and includes all labor and materials for the construction phase of the project. The schedule for the construction phase is within a two week timeline during the end of March, 2021. The risk analysis includes a Risk Register which uses the Severity Table and Risk Breakdown Structure (RBS) together to evaluate the risk of specific events of the project. The RBS consists of the following four categories: Environmental, Resources, Management, and Construction. Plan documents meet all local building codes per the requirements of the City of SLO

    Suppression of electron scattering resonances in graphene by quantum dots

    Full text link
    Transmission of low-energetic electrons through two-dimensional materials leads to unique scattering resonances. These resonances contribute to photoemission from occupied bands where they appear as strongly dispersive features of suppressed photoelectron intensity. Using angle-resolved photoemission we have systematically studied scattering resonances in epitaxial graphene grown on the chemically differing substrates Ir(111), Bi/Ir, Ni(111) as well as in graphene/Ir(111) nanopatterned with a superlattice of uniform Ir quantum dots. While the strength of the chemical interaction with the substrate has almost no effect on the dispersion of the scattering resonances, their energy can be controlled by the magnitude of charge transfer from/to graphene. At the same time, a superlattice of small quantum dots deposited on graphene eliminates the resonances completely. We ascribe this effect to a nanodot-induced buckling of graphene and its local rehybridization from sp2^{2} to sp3^{3} towards a three-dimensional structure. Our results suggest nanopatterning as a prospective tool for tuning optoelectronic properties of two-dimensional materials with graphene-like structure.Comment: The following article has been submitted to Applied Physics Letters. If it is published, it will be found online at http://apl.aip.or

    Rashba splitting of 100 meV in Au-intercalated graphene on SiC

    Full text link
    Intercalation of Au can produce giant Rashba-type spin-orbit splittings in graphene but this has not yet been achieved on a semiconductor substrate. For graphene/SiC(0001), Au intercalation yields two phases with different doping. Here, we report the preparation of an almost pure p-type graphene phase after Au intercalation. We observe a 100 meV Rashba-type spin-orbit splitting at 0.9 eV binding energy. We show that this giant splitting is due to hybridization and much more limited in energy and momentum space than for Au-intercalated graphene on Ni

    Laser-induced persistent photovoltage on the surface of a ternary topological insulator at room temperature

    Full text link
    Using time- and angle-resolved photoemission, we investigate the ultrafast response of excited electrons in the ternary topological insulator (Bi1x_{1 x}Sbx_{x})2_2Te3_3 to fs-infrared pulses. We demonstrate that at the critical concentration xx=0.55, where the system becomes bulk insulating, a surface voltage can be driven at room temperature through the topological surface state solely by optical means. We further show that such a photovoltage persists over a time scale that exceeds ∼\sim6 μ\mus, i.e, much longer than the characteristic relaxation times of bulk states. We attribute the origin of the photovoltage to a laser-induced band-bending effect which emerges near the surface region on ultrafast time scales. The photovoltage is also accompanied by a remarkable increase in the relaxation times of excited states as compared to undoped topological insulators. Our findings are relevant in the context of applications of topological surface states in future optical devices.Comment: 5 pages, 4 figure

    Ultrafast spin polarization control of Dirac fermions in topological insulators

    Full text link
    Three-dimensional topological insulators (TIs) are characterized by spin-polarized Dirac-cone surface states that are protected from backscattering by time-reversal symmetry. Control of the spin polarization of topological surface states (TSSs) using femtosecond light pulses opens novel perspectives for the generation and manipulation of dissipationless surface spin currents on ultrafast timescales. Using time-, spin-, and angle-resolved spectroscopy, we directly monitor for the first time the ultrafast response of the spin polarization of photoexcited TSSs to circularly-polarized femtosecond pulses of infrared light. We achieve all-optical switching of the transient out-of-plane spin polarization, which relaxes in about 1.2 ps. Our observations establish the feasibility of ultrafast optical control of spin-polarized Dirac fermions in TIs and pave the way for novel optospintronic applications at ultimate speeds.Comment: 9 pages, 4 figure

    Mn valence instability in La2/3Ca1/3MnO3 thin films

    Full text link
    A Mn valence instability on La2/3Ca1/3MnO3 thin films, grown on LaAlO3 (001)substrates is observed by x-ray absorption spectroscopy at the Mn L-edge and O K-edge. As-grown samples, in situ annealed at 800 C in oxygen, exhibit a Curie temperature well below that of the bulk material. Upon air exposure a reduction of the saturation magnetization, MS, of the films is detected. Simultaneously a Mn2+ spectral signature develops, in addition to the expected Mn3+ and Mn4+ contributions, which increases with time. The similarity of the spectral results obtained by total electron yield and fluorescence yield spectroscopy indicates that the location of the Mn valence anomalies is not confined to a narrow surface region of the film, but can extend throughout the whole thickness of the sample. High temperature annealing at 1000 C in air, immediately after growth, improves the magnetic and transport properties of such films towards the bulk values and the Mn2+ signature in the spectra does not appear. The Mn valence is then stable even to prolonged air exposure. We propose a mechanism for the Mn2+ ions formation and discuss the importance of these observations with respect to previous findings and production of thin films devices.Comment: Double space, 21 pages, 6 figure

    Band Renormalization of Blue Phosphorus on Au 111

    Get PDF
    Most recently, theoretical calculations predicted the stability of a novel two dimensional phosphorus honeycomb lattice named blue phosphorus. Here, we report on the growth of blue phosphorus on Au 111 and unravel its structural details using diffraction, microscopy and theoretical calculations. Most importantly, by utilizing angle resolved photoemission spectroscopy we identify its momentum resolved electronic structure. We find that Au 111 breaks the sublattice symmetry of blue phosphorus leading to an orbital dependent band renormalization upon the formation of a 4 4 superstructure. Notably, the semiconducting two dimensional phosphorus realizes its valence band maximum at 0.9 eV binding energy, however, shifted in momentum space due to the substrate induced band renormalizatio

    Correlated Electrons Step-by-Step: Itinerant-to-Localized Transition of Fe Impurities in Free-Electron Metal Hosts

    Get PDF
    High-resolution photoemission spectroscopy and realistic ab-initio calculations have been employed to analyze the onset and progression of d-sp hybridization in Fe impurities deposited on alkali metal films. The interplay between delocalization, mediated by the free-electron environment, and Coulomb interaction among d-electrons gives rise to complex electronic configurations. The multiplet structure of a single Fe atom evolves and gradually dissolves into a quasiparticle peak near the Fermi level with increasing the host electron density. The effective multi-orbital impurity problem within the exact diagonalization scheme describes the whole range of hybridizations.Comment: 10 pages, 4 figure

    Magnetism and interlayer coupling in fcc Fe/Co films

    Get PDF
    The magnetism of epitaxial fee Fe films deposited on Co(100) and sandwiched between two Co(100) films was investigated by x-ray magnetic circular dichroism. The dependence of the Fe magnetism on the film thickness is complex and qualitatively similar on Co(100) and in fee Co/Fe/Co(100) trilayers. The fee Fe film magnetization presents a pronounced oscillation, suggesting a partial antiferromagnetic ordering in the 5-10 monolayer thickness range. The fee Fe films mediate an oscillatory, indirect coupling in Co/Fe/Co(100) structures that alternates in correspondence with the changes of the Fe magnetization

    Photoemission of Bi2_2Se3_3 with Circularly Polarized Light: Probe of Spin Polarization or Means for Spin Manipulation?

    Get PDF
    Topological insulators are characterized by Dirac cone surface states with electron spins aligned in the surface plane and perpendicular to their momenta. Recent theoretical and experimental work implied that this specific spin texture should enable control of photoelectron spins by circularly polarized light. However, these reports questioned the so far accepted interpretation of spin-resolved photoelectron spectroscopy. We solve this puzzle and show that vacuum ultraviolet photons (50-70 eV) with linear or circular polarization probe indeed the initial state spin texture of Bi2_2Se3_3 while circularly polarized 6 eV low energy photons flip the electron spins out of plane and reverse their spin polarization. Our photoemission calculations, considering the interplay between the varying probing depth, dipole selection rules and spin-dependent scattering effects involving initial and final states explain these findings, and reveal proper conditions for light-induced spin manipulation. This paves the way for future applications of topological insulators in opto-spintronic devices.Comment: Submitted for publication (2013
    • …
    corecore