14 research outputs found

    Modification of forests by people means only 40% of remaining forests have high ecosystem integrity

    Get PDF
    Many global environmental agendas, including halting biodiversity loss, reversing land degradation, and limiting climate change, depend upon retaining forests with high ecological integrity, yet the scale and degree of forest modification remain poorly quantified and mapped. By integrating data on observed and inferred human pressures and an index of lost connectivity, we generate a globally consistent, continuous index of forest condition as determined by the degree of anthropogenic modification. Globally, only 17.4 million km2 of forest (40.5%) has high landscape-level integrity (mostly found in Canada, Russia, the Amazon, Central Africa, and New Guinea) and only 27% of this area is found in nationally designated protected areas. Of the forest inside protected areas, only 56% has high landscape-level integrity. Ambitious policies that prioritize the retention of forest integrity, especially in the most intact areas, are now urgently needed alongside current efforts aimed at halting deforestation and restoring the integrity of forests globally

    A small subset of protected areas are a highly significant source of carbon emissions

    Get PDF
    Protected areas (PAs) aim to protect multiple ecosystem services. However, not all are well protected. For the first time, using published carbon and forest loss maps, we estimate carbon emissions in large forest PAs in tropical countries (N = 2018). We found 36 ± 16 Pg C stored in PA trees, representing 14.5% of all tropical forest biomass carbon. However the PAs lost forest at a mean rate of 0.18% yr(−1) from 2000–2012. Lower protection status areas experienced higher forest losses (e.g. 0.39% yr(−1) in IUCN cat III), yet even highest status areas lost 0.13% yr(−1) (IUCN Cat I). Emissions were not evenly distributed: 80% of emissions derived from 8.3% of PAs (112 ± 49.5 Tg CO(2) yr(−1); n = 171). Unsurprisingly the largest emissions derived from PAs that started with the greatest total forest area; accounting for starting forest area and relating that to carbon lost using a linear model (r(2) = 0.41), we found 1.1% outlying PAs (residuals >2σ; N = 23), representing 1.3% of the total PA forest area, yet causing 27.3% of all PA emissions. These results suggest PAs have been a successful means of protecting biomass carbon, yet a subset causing a disproportionately high share of emissions should be an urgent priority for management interventions

    Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity

    Get PDF
    Many global environmental agendas, including halting biodiversity loss, reversing land degradation, and limiting climate change, depend upon retaining forests with high ecological integrity, yet the scale and degree of forest modification remain poorly quantified and mapped. By integrating data on observed and inferred human pressures and an index of lost connectivity, we generate a globally consistent, continuous index of forest condition as determined by the degree of anthropogenic modification. Globally, only 17.4 million km2 of forest (40.5%) has high landscape-level integrity (mostly found in Canada, Russia, the Amazon, Central Africa, and New Guinea) and only 27% of this area is found in nationally designated protected areas. Of the forest inside protected areas, only 56% has high landscape-level integrity. Ambitious policies that prioritize the retention of forest integrity, especially in the most intact areas, are now urgently needed alongside current efforts aimed at halting deforestation and restoring the integrity of forests globally

    Multiple forest use through commercial sport hunting: lessons from a community-based model from the Petén, Guatemala

    No full text
    The “Proyecto Pavo” is a project dedicated to the conservation of the Ocellated Turkey (Meleagris ocellata) through sustainable use of the species in multiple-use, community-managed forest concessions of the Maya Biosphere Reserve in Petén, Guatemala. Since 2000, the project has conducted selective turkey harvests, performed related research, and promoted the conservation benefits of managed sport hunting for this species. Field activities of the project feature providing high-quality Ocellated Turkey hunts to sport hunter clients. Participating concessions benefit directly from harvest revenues of a resource that was not previously exploited commercially and indirectly from affiliated project activities. The project began operations in a single concession on an experimental basis and evolved into a commercial enterprise operating in multiple concession units. The project has overcome numerous development and operational challenges, including compatibility issues with timber and NTFP extraction. Under proper circumstances, carefully designed sport hunting programs can offer profitable and sustainable forest product diversification alternatives that are highly compatible with tropical multiple-use management and forest conservation objectives

    Tropical Deforestation, Community Forests, and Protected Areas in the Maya Forest

    No full text
    Community forests and protected areas have each been proposed as strategies to stop deforestation. These management strategies should be regarded as hypotheses to be evaluated for their effectiveness in particular places. We evaluated the community-forestry hypothesis and the protected-area hypothesis in community forests with commercial timber production and strict protected areas in the Maya Forest of Guatemala and Mexico. From land-use and land cover change (LUCC) maps derived from satellite images, we compared deforestation in 19 community forests and 11 protected areas in both countries in varying periods from 1988 to 2005. Deforestation rates were higher in protected areas than in community forests, but the differences were not significant. An analysis of human presence showed similar deforestation rates in inhabited protected areas and recently inhabited community forests, but the differences were not significant. There was also no significant difference in deforestation between uninhabited protected areas, uninhabited community forests, and long-inhabited community forests. A logistic regression analysis indicated that the factors correlated with deforestation varied by country. Distance to human settlements, seasonal wetlands, and degree and length of human residence were significant in Guatemala, and distance to previous deforestation and tropical semideciduous forest were significant in Mexico. Varying contexts and especially colonization histories are highlighted as likely factors that influence different outcomes. Poorly governed protected areas perform no better as a conservation strategy than poorly governed community forests with recent colonists in active colonization fronts. Long-inhabited extractive communities perform as well as uninhabited strict protected areas under low colonization pressure. A review of costs and benefits suggests that community forests may generate more local income with lower costs. Small sample sizes may have limited the statistical power of our comparisons, but descriptive statistics on deforestation rates, logistic regression analyses, LUCC maps, data available on local economic impacts, and long-term ethnographic and action-research constitute a web of evidence supporting our conclusions. Long-inhabited community forest management for timber can be as effective as uninhabited parks at delivering long-term forest protection under certain circumstances and more effective at delivering local benefits

    Graduate students and knowledge exchange with local stakeholders: possibilities and preparation

    No full text
    Tropical biologists are exploring ways to expand their role as researchers through knowledge exchange with local stakeholders. Graduate students are well positioned for this broader role, particularly when supported by graduate programs. We ask: (1) how can graduate students effectively engage in knowledge exchange during their research; and (2) how can university programs prepare young scientists to take on this partnership role? We present a conceptual framework with three levels at which graduate students can exchange knowledge with stakeholders (information sharing, skill building, and knowledge generation) and discuss limitations of each. Examples of these strategies included disseminating preliminary research results to southern African villages, building research skills of Brazilian undergraduate students through semester-long internships, and jointly developing and implementing a forest ecology research and training program with one community in the Amazon estuary. Students chose strategies based on stakeholders' interests, research goals, and a realistic evaluation of student capacity and skill set. As strategies became more complex, time invested, skills mobilized, and strength of relationships between students and stakeholders increased. Graduate programs can prepare students for knowledge exchange with partners by developing specialized skills training, nurturing external networks, offering funding, maximizing strengths of universities in developed and developing regions through partnership, and evaluating knowledge exchange experiences. While balancing the needs of academia with those of stakeholders is challenging, the benefits of enhancing local scientific capacity and generating more locally relevant research for improved conservation may be worth the risks associated with implementing this type of graduate training model

    Emerging trends of the illegal wildlife trade in Mesoamerica

    No full text
    Mesoamerica is the world's third largest biodiversity hotspot and has c. 4,000 wildlife species protected under CITES. Despite the high biodiversity in the region, there is limited global attention, data and funding for conservation. The continued exploitation of wildlife species for the trade requires a more proactive approach to address emerging trends, and low-cost and effective solutions to prevent species decline. Over a 5-month period in 2017, we used expert-driven horizon scanning, facilitated online, to identify emerging trends of the illegal wildlife trade in Mesoamerica. We found that the main emerging trends included digital and technological advancements, greater regional access to the global community, developments in trafficking techniques and growing demand for certain species. Our findings demonstrate that horizon scanning can be used as a tool for identifying emerging trends of illegal wildlife trade in data-poor contexts. We recommend that horizon scanning is used regularly for systematic monitoring of trends and to prioritize resources for immediate and emerging trends in illegal wildlife trade
    corecore