379 research outputs found

    On a class of distributions stable under random summation

    Full text link
    We investigate a family of distributions having a property of stability-under-addition, provided that the number ν\nu of added-up random variables in the random sum is also a random variable. We call the corresponding property a \,ν\nu-stability and investigate the situation with the semigroup generated by the generating function of ν\nu is commutative. Using results from the theory of iterations of analytic functions, we show that the characteristic function of such a ν\nu-stable distribution can be represented in terms of Chebyshev polynomials, and for the case of ν\nu-normal distribution, the resulting characteristic function corresponds to the hyperbolic secant distribution. We discuss some specific properties of the class and present particular examples.Comment: 12 pages, 1 figur

    Multivariate Copula Analysis Toolbox (MvCAT): Describing Dependence and Underlying Uncertainty Using a Bayesian Framework

    Get PDF
    We present a newly developed Multivariate Copula Analysis Toolbox (MvCAT) which includes a wide range of copula families with different levels of complexity. MvCAT employs a Bayesian framework with a residual-based Gaussian likelihood function for inferring copula parameters and estimating the underlying uncertainties. The contribution of this paper is threefold: (a) providing a Bayesian framework to approximate the predictive uncertainties of fitted copulas, (b) introducing a hybrid-evolution Markov Chain Monte Carlo (MCMC) approach designed for numerical estimation of the posterior distribution of copula parameters, and (c) enabling the community to explore a wide range of copulas and evaluate them relative to the fitting uncertainties. We show that the commonly used local optimization methods for copula parameter estimation often get trapped in local minima. The proposed method, however, addresses this limitation and improves describing the dependence structure. MvCAT also enables evaluation of uncertainties relative to the length of record, which is fundamental to a wide range of applications such as multivariate frequency analysis

    Statistical Consequences of Devroye Inequality for Processes. Applications to a Class of Non-Uniformly Hyperbolic Dynamical Systems

    Full text link
    In this paper, we apply Devroye inequality to study various statistical estimators and fluctuations of observables for processes. Most of these observables are suggested by dynamical systems. These applications concern the co-variance function, the integrated periodogram, the correlation dimension, the kernel density estimator, the speed of convergence of empirical measure, the shadowing property and the almost-sure central limit theorem. We proved in \cite{CCS} that Devroye inequality holds for a class of non-uniformly hyperbolic dynamical systems introduced in \cite{young}. In the second appendix we prove that, if the decay of correlations holds with a common rate for all pairs of functions, then it holds uniformly in the function spaces. In the last appendix we prove that for the subclass of one-dimensional systems studied in \cite{young} the density of the absolutely continuous invariant measure belongs to a Besov space.Comment: 33 pages; companion of the paper math.DS/0412166; corrected version; to appear in Nonlinearit

    Budget projections and clinical impact of an immuno-oncology class of treatments: Experience in four EU markets

    Get PDF
    Background Immunotherapies have revolutionized oncology, but their rapid expansion may potentially put healthcare budgets under strain. We developed an approach to reduce demand uncertainty and inform decision makers and payers of the potential health outcomes and budget impact of the anti-PD-1/PD-L1 class of immuno-oncology (IO) treatments. Methods We used partitioned survival modelling and budget impact analysis to estimate overall survival, progression-free survival, life years gained (LYG), and number of adverse events (AEs), comparing “worlds with and without” anti-PD-1/PD-L1s over five years. The cancer types initially included melanoma, first and second line non-small cell lung cancer (NSCLC), bladder, head and neck, renal cell carcinoma, and triple negative breast cancer [1]. Inputs were based on publicly available data, literature, and expert advice. Results The model [2] estimated budget and health impact of the anti-PD-1/PD-L1s and projected that between 2018−2022 the class [3] would have a manageable economic impact per year, compared to the current standard of care (SOC). The first country adaptations showed that for that period Belgium would save around 11,100 additional life years and avoid 6,100 AEs. Slovenia - 1,470 LYGs and 870 AEs avoided; Austria - respectively 4,200, 3,000; Italy – 19,800, 6,800. For Austria, the class had a projected share of about 4.5 % of the cancer care budget and 0.4 % of the total 2020 healthcare budget. For Belgium, Slovenia, and Italy - respectively 15.1 % and 1.1 %, 12.6 %, 0.6 %, and 6.5 %, 0.5 %. Conclusion The Health Impact Projection (HIP) is a horizon scanning model designed to estimate the potential budget and health impact of the PD-(L)1 inhibitor class at a country level for the next five years. It provides valuable data to payers which they can use to support their reimbursement plans

    New distance measures for classifying X-ray astronomy data into stellar classes

    Full text link
    The classification of the X-ray sources into classes (such as extragalactic sources, background stars, ...) is an essential task in astronomy. Typically, one of the classes corresponds to extragalactic radiation, whose photon emission behaviour is well characterized by a homogeneous Poisson process. We propose to use normalized versions of the Wasserstein and Zolotarev distances to quantify the deviation of the distribution of photon interarrival times from the exponential class. Our main motivation is the analysis of a massive dataset from X-ray astronomy obtained by the Chandra Orion Ultradeep Project (COUP). This project yielded a large catalog of 1616 X-ray cosmic sources in the Orion Nebula region, with their series of photon arrival times and associated energies. We consider the plug-in estimators of these metrics, determine their asymptotic distributions, and illustrate their finite-sample performance with a Monte Carlo study. We estimate these metrics for each COUP source from three different classes. We conclude that our proposal provides a striking amount of information on the nature of the photon emitting sources. Further, these variables have the ability to identify X-ray sources wrongly catalogued before. As an appealing conclusion, we show that some sources, previously classified as extragalactic emissions, have a much higher probability of being young stars in Orion Nebula.Comment: 29 page

    Monge Distance between Quantum States

    Get PDF
    We define a metric in the space of quantum states taking the Monge distance between corresponding Husimi distributions (Q--functions). This quantity fulfills the axioms of a metric and satisfies the following semiclassical property: the distance between two coherent states is equal to the Euclidean distance between corresponding points in the classical phase space. We compute analytically distances between certain states (coherent, squeezed, Fock and thermal) and discuss a scheme for numerical computation of Monge distance for two arbitrary quantum states.Comment: 9 pages in LaTex - RevTex + 2 figures in ps. submitted to Phys. Rev.

    Geometrical Insights for Implicit Generative Modeling

    Full text link
    Learning algorithms for implicit generative models can optimize a variety of criteria that measure how the data distribution differs from the implicit model distribution, including the Wasserstein distance, the Energy distance, and the Maximum Mean Discrepancy criterion. A careful look at the geometries induced by these distances on the space of probability measures reveals interesting differences. In particular, we can establish surprising approximate global convergence guarantees for the 11-Wasserstein distance,even when the parametric generator has a nonconvex parametrization.Comment: this version fixes a typo in a definitio
    corecore