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Abstract

In this paper, we propose a multivariate market model with returns as-
sumed to follow a multivariate normal tempered stable distribution. This
distribution, defined by a mixture of the multivariate normal distribution
and the tempered stable subordinator, is consistent with two stylized facts
that have been observed for asset distributions: fat-tails and an asymmetric
dependence structure. Assuming infinitely divisible distributions, we derive
closed-form solutions for two important measures used by portfolio man-
agers in portfolio construction: the marginal VaR and the marginal AVaR.
We illustrate the proposed model using stocks comprising the Dow Jones
Industrial Average, first statistically validating the model based on goodness-
of-fit tests and then demonstrating how the marginal VaR and marginal AVaR
can be used for portfolio optimization using the model. Based on the em-
pirical evidence presented in this paper, our framework offers more realistic
portfolio risk measures and a more tractable method for portfolio optimiza-
tion.
JEL Classifications: C58, C61, G11, G32
Keywords: portfolio risk, portfolio optimization, portfolio budgeting, marginal
contribution, fat-tailed distribution, multivariate normal tempered stable dis-
tribution

1 Introduction
A major contribution to the theory of portfolio theory is the mean-variance

model presented by Markowitz (1952). Although some of the assumptions un-
derlying the model have been challenged since its introduction, the importance
of the model cannot be overstated. The optimization model has been used for
the asset allocation decision, portfolio construction within an asset class, and in
asset-liability management.1 Alternative models have been proposed based on the
relaxation of one or more of the model’s assumption. Although a review of all of
these extensions is beyond the scope of this paper, we mention two assumptions
that are relevant for this paper.

The first is the assumption that asset returns follow a normal (Gaussian) distri-
bution and therefore the use of the variance as a measure of risk ignoring higher-
order moments. The assumption of the normality of return distributions has domi-
nated financial theories despite the preponderance of empirical evidence that dates

1See Fabozzi et al (2002) for a review.
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back to Mandelbrot (1963a,1963b) and Fama (1963) who find no support for this
assumption, as well as theoretical arguments that suggest return distributions will
not be normally distributed.2 What studies have found is that asset returns exhibit
fat tails and asymmetry. Consequently, non-Gaussian distribution models that can
accommodate the observed stylized facts about return distributions have been pro-
posed for use in optimization models for portfolio construction, particularly in the
case of equities.

The subordinated Gaussian distribution is a popular model for constructing a
multivariate market model that accommodates fat tails and asymmetry. This dis-
tribution is defined by taking the multivariate normal distribution and changing
the variance to a strictly positive random vector. For example, in Rachev and Mit-
tnik (2000), portfolio analysis is formulated assuming an α-stable subordinated
Gaussian distribution. Subsequently, the inverse Gaussian subordinated Gaussian
distribution (normal inverse Gaussian distribution) and the inverse gamma subor-
dinated Gaussian distribution (skewed-t distribution) have been applied to portfo-
lio analysis by Øigård et al (2005), Aas et al (2006), Eberlein and Madan (2010),
Stoyanov et al (2009), and Adcock (2010).

The second assumption, which is related to the first assumption, is the use
of portfolio variance as a measure of risk. Alternative risk measures have been
proposed. One of the most popular is the value-at-risk (VaR) measure, its pop-
ularity being the result of its endorsement by bank regulators despite the well-
known limitations of this measure. A better risk measure that overcomes many
of the limitations of VaR and, unlike VaR, is a coherent risk measure is average
VaR (AVaR).3 The closed-form solution for AVaR for the α-stable distribution,
the skewed-t distribution, and the infinitely divisible distributions containing tem-
pered stable distributions have been derived by Stoyanov et al (2006), Dokov et al
(2008), and Kim et al (2010), respectively. Portfolio optimization using AVaR is
also studied in Mansini et al (2007).

An important measure derived from portfolio optimization that managers uti-
lize in making portfolio rebalancing decisions or re-optimization decisions is the
marginal risk contribution of a portfolio holding. This risk measure with respect
to a given portfolio holding can be thought of as the rate of change in risk (whether
it is variance, VaR, or AVaR) with respect to a small percentage change in the size
of a portfolio holding and is defined by the first derivative of the risk measure
with respect to the holding’s marginal weight. Because of the importance of this
measure in portfolio decisions, a closed-form solution for this measure is needed.
The general form of marginal risk contributions with respect to the VaR and AVaR

2For a review of the empirical evidence, see Rachev et al (2005).
3AVaR is also called conditional value-at-risk (CVaR). AVaR satisfies all axioms of a coherent

risk measure and is consistent with preference relations of risk-averse investors. See Pflug (2000),
Rockafellar and Uryasev(2000, 2002), and Rachev et al (2007)).

3



are provided in Gourieroux et al (2000).
In this paper, we propose a multivariate market model with returns assumed

to follow a multivariate normal tempered stable (MNTS) distribution. The MNTS
distribution, defined by a mixture of the multivariate normal distribution and the
tempered stable subordinator,4 captures the fat-tail property of asset returns and
has an asymmetric dependence structure. We derive closed-form solutions for the
marginal VaR and marginal AVaR for infinitely divisible distributions and apply
them to the MNTS market model (hereafter simply the MNTS model). We il-
lustrate the procedure using actual stocks, first statistically validating the MNTS
model using goodness-of-fit tests and then demonstrating how the marginal VaR
and marginal AVaR can be used for portfolio optimization under the MNTS model.

We have organized the paper as follows. The MNTS distribution is presented
in Section 2. Closed-form solutions for the marginal VaR and AVaR for infinitely
divisible distributions are presented in Section 3, where we also discuss portfolio
optimization using the marginal VaR and the marginal AVaR. In Section 4, the
market model assuming the MNTS distribution is discussed and the closed-form
solutions for the marginal VaR and AVaR are applied to the portfolio return for
the MNTS model. The empirical illustration for the MNTS model is provided in
Section 5 which also reports (1) the empirical results of parameter estimations and
the goodness-of-fit tests for the MNTS model and (2) the marginal VaR and AVaR
values together with optimal portfolios using those two marginal risks. In Section
6, we summarize our principal findings. In the paper’s appendix, we present the
proof of the closed-form solution for the marginal VaR for infinitely divisible
distributions.

2 Multivariate Normal Tempered Stable Distribu-
tion

Let α ∈ (0, 2) and θ > 0. The purely non-Gaussian infinitely divisible random
variable T whose characteristic function is given by

φT (u) = exp

(
−2θ1−

α
2

α

(
(θ − iu)

α
2 − θ

α
2

))
(1)

is referred to as the classical tempered stable (CTS) subordinator with parameters
(α, θ). Let

X = µ+ β(T − 1) + γ
√
Tε,

4The tempered stable subordinated Gaussian process was also studied by Barndorff-Nielsen
and Shephard (2001).
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where µ, β ∈ R, γ > 0, ε ∼ N(0, 1), and T is the CTS subordinator, independent
of ε, with parameters (α, θ). Then, the random variable X is referred to as normal
tempered stable (NTS) random variable with parameters (α, θ, β, γ, µ) that we
denote by X ∼ NTS(α, θ, β, γ, µ). By composing characteristic functions of ε
and T , we obtain the characteristic function of X as follows:

φX(u) = φNTS(u;α, θ, β, γ, µ)

= exp

(
(µ− β)ui− 2θ1−

α
2

α

((
θ − iβu+

γ2u2

2

)α
2

− θ
α
2

))
. (2)

The mean of X is equal to E[X] = µ, and Var(X) = γ2 +β2
(
2−α
2θ

)
, respectively.

Moreover we can prove that E[euX ] <∞ if and only if

u ∈

[
−β −

√
β2 + 2γ2θ

γ2
,
−β +

√
β2 + 2γ2θ

γ2

]
.

Providing µ = 0 and γ =
√

1− β2
(
2−α
2θ

)
with |β| <

√
2θ
2−α , the NTS random

variable has zero mean and unit variance. In this case, X is referred to as the
standard NTS random variable with parameters (α,θ,β) which we denote by X ∼
stdNTS(α, θ, β).5 The characteristic function of X is equal to

φX(u) = exp

(
−βui− 2θ1−

α
2

α

((
θ − iβu+

(
1− β2(2− α)

2θ

)
u2

2

)α
2

− θ
α
2

))
.

(3)
Let X = (X1, X2, · · · , XN)T be a multivariate random variable given by

X = µ+ β(T − 1) + γ
√
Tε,

where

µ = (µ1, µ2, · · · , µN)T ∈ RN

β = (β1, β2, · · · , βN)T ∈ RN

γ = (γ1, γ2, · · · , γN)T ∈ RN
+ with R+ = [0,∞)

ε = (ε1, ε2, · · · , εN)T is N -dim standard normal distribution with a covari-
ance matrix ρ. That is, εn ∼ N(0, 1) for n ∈ {1, 2, · · · , N} and (k, l)-th
element of ρ is given by ρk,l = cov(εk, εl) for k, l ∈ {1, 2, · · · , N}.

5See Rachev et al (2011) for more details.
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T = the CTS subordinator with parameters (α, θ), α ∈ (0, 1) and θ > 0,
such that T is independent to εn for all n = 2, · · · , N .

Then the random variable X is referred to as the multivariate NTS (MNTS) ran-
dom variable with parameters (α, θ, β, γ, µ, ρ) which we denote byX ∼ MNTS(α,
θ, β, γ, µ, ρ). The mean and variance ofX are equal to E[X] = µ, and covariance
between Xk and Xl is given by

cov(Xk, Xl) = ρk,lγkγl + βkβl

(
2− α

2θ

)
(4)

for k, l ∈ {1, 2, · · · , N}.

Proposition 1. Let x = (x1, x2, · · · , xN)T ∈ RN . Then xTX ∼ NTS(α, θ, β̄, γ̄, µ̄),
where

µ̄ =
N∑
n=1

xnµn, β̄ =
N∑
n=1

xnβn, and γ̄ =

√√√√ N∑
k=1

N∑
l=1

xkxlγkγlρk,l.

Proof. The random variable xTX can be represented by

xTX =
N∑
n=1

xnXn =
N∑
n=1

xnµn +

(
N∑
n=1

xnβn

)
(T − 1) +

√
T

(
N∑
n=1

xnγnεn

)
.

Since we have

N∑
n=1

xnγnεn = ξ

√√√√ N∑
k=1

N∑
l=1

xkxlγkγlρk,l, ξ ∼ N(0, 1)

by the property of linear combination of normal random variables, we obtain the
result by the definition of NTS distribution.

Providing µn = 0 and γn =
√

1− β2
n

(
2−α
2θ

)
with |βn| <

√
2θ
2−α for all n

∈ {1,2, · · · ,N}, the MNTS random variable X has E[X] = (0, 0, · · · , 0)T and
Var(X) = (1,1,· · · ,1)T . In this case, X is referred to as the standard MNTS ran-
dom variable with parameters (α,θ,β,ρ) and we denote it byX ∼ stdMNTS(α,θ,β,ρ).

3 Marginal contributions of VaR and AVaR
In this paper, we assume that (1) R = (R1, R2, · · · , RN)T is a random vector

of returns for N stocks, (2) Rp(w) = wT · R is a portfolio return for a weight
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vector w =(w1, w2, · · · , wN)T , and (3) Z = Rj , Y =
∑N

n=1,n6=j wnRn for
j ∈ {1, 2, · · · , N}. Moreover, let φRp(w) denote the characteristic function of
Rp(w), and f(Y,Z)(u, v) and φ(Y,Z)(u, v) be the density and characteristic func-
tions of (Y, Z), respectively. Then clearly we have Rp(w) = Y + wjZ.

The definition of VaR for Rp(w) with the significance level η is

VaRη(Rp(w)) = − inf{x|P[Rp(w) ≤ x] > η}.

If Rp(w) is continuous, then we have

VaRη(Rp(w)) = −F−1Rp(w)
(η),

where F−1Rp(w)
is the inverse function of the cumulative distribution function of

Rp(w). The first derivative of VaRη(Rp(w)) with respect to wj , the j-th element
of w, is referred to as the marginal VaR. The marginal VaR is computed by the
following proposition whose proof is provided in the appendix to this paper.

Proposition 2. Assume that P[RP (w) = −V aRη(RP (w))] 6= 0 and the random
variables Y and Z are continuous and infinitely divisible. If there are b < 0 and
c > 0 in R such that |φ(Y,Z)(u, v + ib)| < ∞ and |φ(Y,Z)(u, v + ic)| < ∞ for all
(u, v) ∈ R2, then we have

∂

∂wj
VaRη(Rp(w)) =

I1(−VaRη(Rp(w)), b, c)

I2(−VaRη(Rp(w)), b, c)
, (5)

where

I1(K, b, c) =

∫ ∞
−∞

∫ ∞
−∞

e−iKu
(
φ(Y,Z)(u, v + ic)

(wju− v − ic)2
−
φ(Y,Z)(u, v + ib)

(v − wju+ ib)2

)
dvdu,

I2(K, b, c) =

∫ ∞
−∞

∫ ∞
−∞

ie−iKu
(
φ(Y,Z)(u, v + ic)

wju− v − ic
+
φ(Y,Z)(u, v + ib)

v − wju+ ib

)
dvdu.

The definition of AVaR for Rp(w) with the significance level η is

AVaRη(Rp(w)) =
1

η

∫ η

0

VaRx(Rp(w))dx.

If Rp(w) is continuous, then we have

AVaRη(Rp(w)) = −E [Rp(w)|Rp(w) < −VaRη(Rp(w))] .

Suppose Rp(w) is infinitely divisible and the distribution function of Rp(w) is
continuous. If there is δ > 0 such that |φRp(w)(−u+ iδ)| <∞ for all u ∈ R, then

7



the following formula for AVaRη(Rp(w)) can be obtained:6

AVaRη(Rp(w))

= VaRη(Rp(w))− e−VaRη(Rp(w))δ

πη
<
∫ ∞
0

e−iuVaRη(Rp(w))φRp(w)(−u+ iδ)

(−u+ iδ)2
du,

(6)

The first derivative of AVaRη(Rp(w)) with respect to wj is referred to as the
marginal AVaR. By taking the first derivative of equation (6) with respect to wj ,
we easily obtain the marginal AVaR as the following proposition without proof:

Proposition 3. Suppose Rp(w) is infinitely divisible and the distribution function
of Rp(w) is continuous. If there is δ > 0 such that |φRp(w)(−u+ iδ)| <∞ for all
u ∈ R, then the marginal AVaR with respect to Rp(w) is equal to

∂

∂wj
AVaRη(Rp(w)) =

∂

∂wj
VaRη(Rp(w))

+
e−δVaRη(Rp(w))

πη
<
∫ ∞
0

e−iuVaRη(Rp(w))φRp(w)(−u+ iδ)

(−u+ iδ)2

×
(

(δ + iu)
∂

∂wj
VaRη(Rp(w))− ∂

∂wj
log φRp(w)(−u+ iδ)

)
du. (7)

Suppose a portfolio weight vector w =(w1, w2, · · · , wN)T is given and let
∆w = (∆w1, ∆w2, · · · , ∆wN)T ∈ D where D is a zero neighborhood in RN .
The optimal portfolios with respect to VaR and AVaR are obtained by solving the
following problem:

maxE[Rp(∆w)] (8)

subject to ∆VaRη(Rp(w)) ≤ 0 and
N∑
j=1

∆wj = 0.

and

maxE[Rp(∆w)] (9)

subject to ∆AVaRη(Rp(w)) ≤ 0 and
N∑
j=1

∆wj = 0,

6See Proposition 2 in Kim et al (2010). In their paper, AVaR is defined on the loss distribution.
We modified the proposition here because we are looking at the return distribution instead of the
loss distribution.

8



where

∆VaRη(Rp(w)) = VaRη(Rp(w +∆w))− VaRη(Rp(w))

∆AVaRη(Rp(w)) = AVaRη(Rp(w +∆w))− AVaRη(Rp(w)).

Since we have

∆VaRη(Rp(w)) ≈
N∑
j=1

∂

∂wj
VaRη(Rp(w))∆wj,

∆AVaRη(Rp(w)) ≈
N∑
j=1

∂

∂wj
AVaRη(Rp(w))∆wj.

and E[Rp(w+∆w)]−E[Rp(w)] = E[Rp(∆w)] = µT ·∆w, we can find the opti-
mal portfolio on the local domain D with respect to VaR and AVaR, respectively,
as follows:

∆w∗ = arg max
∆w∈D

µT ·∆w (10)

subject to ∆VaRη(Rp(w)) ≤ 0 and
N∑
j=1

∆wj = 0,

and

∆w∗ = arg max
∆w∈D

µT ·∆w (11)

subject to ∆AVaRη(Rp(w)) ≤ 0 and
N∑
j=1

∆wj = 0.

4 Marginal VaR and marginal AVaR for MNTS model
We say that the random vector R for N stocks follows the MNTS model if we

have
R = µ+ σX, (12)

where X ∼ stdMNTS(α,θ,β,ρ), µ = (µ1, µ2,· · · , µN)T ∈ RN , and σ= (σ1,
σ2, · · · , σN)T ∈ RN

+ . Under the MNTS model, we have Rp(w) ∼ MNTS(α, θ,

σ ∗ β, σ ∗ γ, µ, ρ), where γ = (γ1, γ2, · · · , γN)T with γn =
√

1− β2
n

(
2−α
2θ

)
for n ∈ {1, 2, · · · , N}, and * is the element-wise product.7 Moreover, we have

7The element-wise product is defined as

(a1, a2, · · · , aN )T ∗ (b1, b2, · · · , bN )T = (a1b1, a2b2, · · · , aNbN )T .

9



E[R] = µ, Var(R) = σ and cov(Rk, Rl) = σkσlcov(Xk, Xl) with cov(Xk, Xl) =
ρk,lγkγl + βkβl

(
2−α
2θ

)
for k, l ∈ {1, 2, · · · , N}.

The portfolio return Rp(w) for the weight vector w =(w1, w2, · · · , wN)T is
given by the linear combination of w and R as follows

Rp(w) = wTR =
N∑
n=1

wnµn +

(
N∑
n=1

wnσnβn

)
(T − 1) +

√
T

(
N∑
n=1

wnσnγnεn

)
.

By Proposition 1, we obtain

Rp(w) ∼ NTS(α, θ, βp, γp, µp),

where

µp =
N∑
n=1

wnµn, βp =
N∑
n=1

wnσnβn, γp =

√√√√ N∑
k=1

N∑
l=1

wkwlσkσlγkγlρk,l.

Hence, the characteristic function of Rp(w) is given by

φRp(w)(u) = exp

[
N∑
n=1

wn(µn − σnβn)ui

− 2θ1−
α
2

α

(θ − iu N∑
n=1

wnσnβn +
u2

2

n∑
k=1

n∑
l=1

wkwlσkσlγkγlρk,l

)α
2

− θ
α
2

]
(13)

The first-order partial derivative of the characteristic function of Rp(w) for wj is
equal to

∂

∂wj
φRp(w)(u) = φRp(w)(u)

∂

∂wj
log φRp(w)(u), (14)

where

∂

∂wj
log φRp(w)(u)

= (µj − σjβj)ui+

(
1− iu

θ

N∑
n=1

wnσnβn +
u2

2θ

n∑
k=1

n∑
l=1

wkwlσkσlγkγlρk,l

)α
2
−1

×

(
uiσjβj − u2σjγj

N∑
n=1

wnσnγnρn,j

)
(15)

10



for j ∈ {1, 2, · · · , N}
Under the MNTS model, the values Z = Rj and Y =

∑N
n=1,n 6=j wnRn for

j ∈ {1, 2, · · · , N} are equal to

Z = Rj = µZ + βZ(T − 1) + γZ
√
TεZ

and Y = µY + βY (T − 1) + γY
√
TεY ,

where

µZ = µj, βZ = σjβj, γZ = σjγj, εZ = εj ∼ N(0, 1),

µY =
N∑

n=1,n6=j

wnµn, βY =
N∑

n=1,n 6=j

wnσnβn,

γY =

√√√√ N∑
k=1,n 6=j

N∑
l=1,n 6=j

wkwlσkσlγkγlρk,l,

and

εY =
1

γY

N∑
k=1,n 6=j

wkσkγkεk ∼ N(0, 1).

Moreover, we have

ρY,Z = cov(εY , εZ) =
1

γY

N∑
k=1,n 6=j

wkσkγkρk,j,

and hence we have

(Y, Z) ∼ MNTS
(
α, θ,

(
βY
βZ

)
,

(
γY
γZ

)
,

(
µY
µZ

)
,

(
1 ρY,Z
ρY,Z 1

))
Since uZ + vY is a linear combination of (Y, Z) for (u, v) ∈ R, uZ + vY

becomes a NTS random variable; that is,

uZ + vY

∼ NTS
(
α, θ, uβY + vβZ ,

√
u2γ2Y + 2uvρZ,Y γY γZ + v2γ2Z , uµY + vµZ

)

11



by Proposition 1. Hence the characteristic function of (Y, Z) is given by

φ(Y,Z)(u, v) = E[ei(uY+vZ)]

= exp

[
iu(µY − βY ) + iv(µZ − βZ)

− 2θ1−
α
2

α

((
θ − i(uβY + vβZ) +

1

2

√
u2γ2Y + 2uvρY,ZγY γZ + v2γ2Z

)α
2

− θ
α
2

)]
.

(16)

We can prove that φ(Y,Z)(u, v + ia) < ∞ if a ∈
[
βZ−
√
β2
Z+2γ2Zθ

γ2Z
,
βZ+
√
β2
Z+2γ2Zθ

γ2Z

]
.

Therefore, by substituting (16) into (5) with b and c such that

βZ −
√
β2
Z + 2γ2Zθ

γ2Z
≤ b < 0 < c ≤

βZ +
√
β2
Z + 2γ2Zθ

γ2Z
,

we obtain the marginal VaR with respect to the j-th stock in the portfolio under
the MNTS model. Moreover, by substituting (13) and (15) into (7), we obtain the
marginal AVaR with respect to the j-th stock in the portfolio.

5 Empirical illustration
In this section, we report the maximum likelihood estimation (MLE) of the

MNTS model using data obtained from OptionMetricss Ivy DB in the Wharton
Research Data Services. In our empirical study, we use historical prices for 29
of the 30 component stocks comprising the Dow Jones Industrial Average (DJIA)
as of October 2010.8 The name of the 29 stocks and their tickers are listed in
Table 1. First, we take the stock prices for the 29 companies from November 1,
1999 to October 31, 2009. The number of daily returns for each stock and the
index is 2,516. Then we form an equally weighted portfolio with those 29 stocks,
calculating the marginal VaR and marginal AVaR with respect to each stock in the
portfolio. Finally, we find the optimal portfolio which locally minimizes VaR and
AVaR.

We assume that daily returns of the 29 stocks follow the MNTS model. That is
R = µ+σX where µ and σ are the mean vector and the standard deviation vector
for those 29 stock returns, and X is the 29-dimensional standard MNTS random
vector with parameters (α, θ, β, ρ). We estimate µ and σ by the sample mean µ̂

8Kraft Foods (KFT) is excluded because the time series we employ begins in 1999 but this
company was not listed until 2001.
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and the sample standard deviation σ̂ for the historical data. Parameters α and θ,
which are obtained from the CTS subordinator, are estimated using the DJIA data.
That is, we assume that normalized daily returns for the DJIA follows the standard
NTS distribution, and fit those parameters using the MLE. The estimated values
using this method are presented in Table 2. We use the Kolmogorov-Smirnov
(KS) and Anderson-Darling (AD) goodness-of-fit tests. Then, we fit the standard
MNTS parameter by MLE using normalizing data for the 29 stock returns.

For each j-th stock (j = 1, 2, · · · , 29) we assume that the normalized return
follows the standard NTS distribution with parameter (α, θ, βj) and estimate βj
using the MLE with α = α̂ and θ = θ̂ where α̂ and θ̂ are reported in Table 2. β̂j

denotes the estimated value of βj and let γ̂j =

√
1− β̂2

j

(
2−α̂
2θ̂

)
. The estimated

parameters are presented in Table 3 along with the goodness-of-fit test statistic.
Based on the KS test, only the estimated parameters for six of the 29 stocks are
rejected at the 1% significance level. None of the parameters for the stocks are re-
jected based on the AD test at the 1% significance level. The matrix ρ is estimated
by (4). That is,

ρ̂k,l =
ĉov(Xk, Xl)− β̂kβ̂l

(
2−α̂
2θ̂

)
γ̂kγ̂l

for k, l ∈ {1, 2, · · · , 29}, where ĉov(Xk, Xl) is the sample covariation between
the k-th stock and the l-th stock returns. Matrix ρ̂, which is the estimated matrix
for ρ, is presented in Table 4.

Consider an equally weight portfolio for the 29 stocks. Then the portfolio
return Rp(w) is equal to

∑29
j=1wjRj where wj = 1/29 and Rj is the random

variable for the daily return of the j-th stock in the portfolio. Under the MNTS
model,Rp(w) becomes the 1-dim NTS distributed random variable by Proposition
1. If we assume that R = µ + σX where X ∼ N(0,Σ), then we obtain the
normal model. In the normal model, the portfolio return Rp(w) follows a normal
distribution with mean µ and variance (w ∗ σ)TΣ(w ∗ σ).

Using the estimated parameters in Table 3 and the matrix ρ̂ in Table 4, we
obtain

Rp(w) ∼ NTS(α̂, θ̂, ˆ̄β, ˆ̄γ, ˆ̄µ),

where α̂ = 1.0301, θ̂ = 0.2205, ˆ̄β = 4.7763 · 10−4, ˆ̄γ = 0.0142, and ˆ̄µ =
2.7788 · 10−4 by parameterization of Proposition 1. The probability density func-
tions for the NTS, normal, and empirical distributions are presented in Figure 1.9

Comparing the empirical density to the NTS and normal density in Figure 1, we
find that the portfolio distribution assuming the normal model is not similar to the

9The NTS density function is computed by the fast Fourier transform method explained in
Rachev et al (2011).
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empirical distribution, while the portfolio distribution assuming the MNTS model
is very similar to the empirical distribution. More precisely, we show the Q-Q
plots in Figure 2. The empirical density deviates significantly from the normal
density as can be seen from the first Q-Q plots in Figure 2. This deviation almost
completely disappears when we use the MNTS model.

Applying the KS and AD tests to the difference between the empirical port-
folio return distribution and the portfolio distribution of the MNTS model, we
obtain KS = 0.0264 with p-value 0.0588 and AD = 0.0562 with p-value 0.9999.
For both the KS and AD tests, the portfolio distribution of the MNTS model is
not rejected at the 1% significance level. The KS statistic applied to the empirical
portfolio return distribution and the portfolio distribution of the normal model is
0.4753 with a p-value of zero.10 Hence, the portfolio distribution of the normal
model is rejected at 1% significant level by the KS test.

The VaR and the AVaR values for the equally weight portfolio for the 29 stocks
at confidence levels {0.1%, 0.2%, · · · , 1%, · · · , 5%} are exhibited in the left (for
VaR) and the right (for AVaR) panels of Figure 3. We plot the values of the normal
and the MNTS models in the two figures and compare the values to their empirical
counterparts. From the results shown in the left panel of Figure 3, both the normal
VaR and the MNTS VaR are similar to the empirical VaR if the confidence level
exceeds 3%. If the confidence level is less than 2%, the MNTS VaR is still similar
to the empirical VaR while the normal VaR is smaller than the empirical VaR.
Moreover, from the results shown in the right panel of Figure 3, the AVaR of the
MNTS model is relatively similar to the empirical AVaR compared to the normal
distribution.

Table 5 provides the marginal VaR and marginal AVaR calculated based on
Propositions 2 and 3 for the 29 stocks in the equally weighted portfolio under
the MNTS model. As we explained at the end of Section 4, the marginal VaR
is obtained by substituting (16) into (5), and the marginal AVaR is obtained by
substituting (13) and (15) into (7). As shown in Table 5, five stocks contribute
greatly to the portfolio 1%-VaR, and five stocks contribute greatly to the portfolio
1%-AVaR. Two stocks (AXP and JPM) are common to both.

We refer to the optimal portfolios obtained by (10) and (11) as the VaR-optimal
portfolio and the AVaR-optimal portfolio, respectively. Results for these optimal
portfolios are also in Table 5 under the local domain

D = {(x1, x2, · · · , x29)|xj ∈ (−0.0172, 0.0172), j = 1, 2, · · · , 29}.

The initial portfolio is the equally weighted portfolio. The ∆w∗ by (10) and (11)
are located in the fourth and the eighth columns in the table, and wnew = w+∆w∗

are presented in the fifth and the ninth columns. The expected daily return is
10We do not mention the AD test since we obtained an infinite AD value for the normal model.
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2.7788 ·10−4 for the equally weighted portfolio, and the expected daily returns for
the VaR-optimal and the AVaR-optimal portfolios are 3.4449 · 10−4 and 3.5397 ·
10−4, respectively. The relative change for the expected daily return is defined by
(µT ·wnew−µT ·w)/(µT ·w). Values of the relative change for the expected daily
returns are 0.2397 and 0.2738 with respect to the VaR-optimal and the AVaR-
optimal portfolios, respectively. That means the investor obtains a 23.97% and
27.38% better expected daily return for the VaR-optimal and the AVaR-optimal
portfolios, respectively.

6 Conclusion
In this paper, we describe the MNTS distributed market model and derive the

closed-form solution for two important measures used by portfolio managers: the
marginal VaR and the marginal AVaR. The proposed model is applied to the anal-
ysis of an equally weighted portfolio comprised of 29-component stocks of the
DJIA. We find that the time series models based on the multivariate normal dis-
tributed model is rejected empirically and therefore does not provide a reliable
distribution of portfolio returns. Our empirical evidence indicates that the MNTS
model provides more realistic results in measuring market risk compared to stan-
dard models based on the normal distribution assumption. Finally, after deriving
a closed-form solutions of the marginal VaR and the marginal AVaR based on the
MNTS model, we applied these formulas to optimize the portfolio with 29 stocks.

Appendix: Proof of Proposition 2
In order to prove Proposition 2, we need the following lemma.

Lemma. If P[RP (w) = −V aRη(RP (w))] 6= 0, then we have

∂

∂wj
VaRη(Rp(w)) =

−
∫∞
−∞ zf(−VaRη(Rp(w))− wjz, z)dz∫∞
−∞ f(−VaRη(Rp(w))− wjz, z)dz

. (17)

Proof. By the definition of VaRη(Rp(w)), we have

P [Y + wjZ ≤ −VaRη(Rp(w))] = η

Let wj 6= 0, ∫ ∞
−∞

∫ −VaRη(Rp(w))−wjz

−∞
f(y, z)dydz = η,
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where f(z, y) is the probability density function for (Y, Z). Taking the first deriva-
tive with respect to wj , we obtain∫ ∞

−∞

(
− ∂

∂wj
VaRη(Rp(w))− z

)
f(−VaRη(Rp(w))− wjz, z)dz = 0.

Hence, we have(
∂

∂wj
VaRη(Rp(w))

)∫ ∞
−∞

f(−VaRη(Rp(w))− wjz, z)dz

= −
∫ ∞
−∞

zf(−VaRη(Rp(w))− wjz, z)dz.

Since
∫∞
−∞ f(−VaRη(Rp(w))−wjz, z)dz = P [Y + wjZ = −VaRη(Rp(w))] 6= 0,

we obtain (17).

Proof of Proposition 2. The pdf of (Y, Z) is obtained by the complex inversion
formula as follows:

f(y, z) =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

e−i(uy+v(z+ia))φ(Y,Z)(u, v + ia)dudv,

if |φ(Y,Z)(u, v + ia)| < ∞ for all (u, v) ∈ R2. Since |φ(u, v + ib)| < ∞ and
|φ(u, v − ic)| <∞ for all (u, v) ∈ R2, we obtain∫ ∞

−∞
zf(K −mz, z)dz =

∫ ∞
0

zf(K −mz, z)dz +

∫ 0

−∞
zf(K −mz, z)dz

=
1

(2π)2

∫ ∞
0

z

∫ ∞
−∞

∫ ∞
−∞

e−iKu+iz(mu−v−ib)φ(Y,Z)(u, v + ib)du dv dz

+
1

(2π)2

∫ 0

−∞
z

∫ ∞
−∞

∫ ∞
−∞

e−iKu+iz(mu−v−ic)φ(Y,Z)(u, v − ic)du dv dz

=
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

e−iKuφ(Y,Z)(u, v + ib)

∫ ∞
0

ze−iz(v−mu+ib)dz du dv

− 1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

e−iKuφ(Y,Z)(u, v − ic)
∫ ∞
0

ze−iz(mu−v−ic)dz du dv.

Since we have
∫∞
0
ze−iz(m+ia)dz = − 1

(m+ia)2
if a < 0 and b,−c < 0, we have∫ ∞

−∞
zf(K −mz, z)dz

=
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

e−iKu
(
φ(Y,Z)(u, v − ic)
(mu− v − ic)2

−
φ(Y,Z)(u, v + ib)

(v −mu+ ib)2

)
du dv. (18)
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On the other hand, we have∫ ∞
−∞

f(K −mz, z)dz =

∫ ∞
0

f(K −mz, z)dz +

∫ 0

−∞
f(K −mz, z)dz

=
1

(2π)2

∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

e−iKu+iz(mu−v−ib)φ(Y,Z)(u, v + ib)du dv dz

+
1

(2π)2

∫ 0

−∞

∫ ∞
−∞

∫ ∞
−∞

e−iKu+iz(mu−v−ic)φ(Y,Z)(u, v − ic)du dv dz

=
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

e−iKuφ(Y,Z)(u, v + ib)

∫ ∞
0

e−iz(v−mu+ib)dz du dv

+
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

e−iKuφ(Y,Z)(u, v − ic)
∫ ∞
0

e−iz(mu−v−ic)dz du dv.

Since b < 0 < c and we have
∫∞
0
e−iz(m+ia)dz = − i

m+ia
if a < 0, we have∫ ∞

−∞
f(K −mz, z)dz

= − i

(2π)2

∫ ∞
−∞

∫ ∞
−∞

e−iKu
(
φ(Y,Z)(u, v − ic)
mu− v − ic

+
φ(Y,Z)(u, v + ib)

v −mu+ ib

)
du dv.

(19)

By substituting (18) and (19) with m = wj into (17) in the above lemma, we
obtain the result.
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Table 1: Names and tickers of the 29 component companies of the DJIA.

Company Name Ticker Index(j)

3M Co. MMM 1
Alcoa Inc. AA 2
American Express Co. AXP 3
AT&T Inc. T 4
Bank of America Corp. BAC 5
Boeing Co. BA 6
Caterpillar Inc. CAT 7
Chevron Corp. CVX 8
Cisco Systems Inc. CSCO 9
Coca-Cola Co. KO 10
E.I. DuPont de Nemours & Co. DD 11
Exxon Mobil Corp. XOM 12
General Electric Co. GE 13
Hewlett-Packard Co. HPQ 14
Home Depot Inc. HD 15
Intel Corp. INTC 16
International Business Machines Corp. IBM 17
Johnson & Johnson JNJ 18
JPMorgan Chase & Co. JPM 19
McDonald’s Corp. MCD 20
Merck & Co. Inc. MRK 21
Microsoft Corp. MSFT 22
Pfizer Inc. PFE 23
Procter & Gamble Co. PG 24
Travelers Cos. Inc. TRV 25
United Technologies Corp. UTX 26
Verizon Communications Inc. VZ 27
Wal-Mart Stores Inc. WMT 28
Walt Disney Co. DIS 29
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Table 2: Estimated parameters for the DJIA index return.

Sample mean of daily returns 6.2227 · 10−5

Sample standard deviation of daily returns 1.27 · 10−2

Parameters of the standard NTS distribution Confidence interval

α̂ = 1.0301 (0.7583, 1.3018)

θ̂ = 0.2205 (0.0873, 0.3536)

β̂ = −0.0369 (−0.0807, 0.0069)
Goodness of fit statistic p-value

KS = 0.0124 (0.8280)
AD = 0.1046 (0.99995)
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Table 3: Estimated parameters for the daily return of 29 component companies
of the DJIA from November 1, 1999, to October 31, 2009.

Ticker Mean Stdev β (CI) KS (p-value) AD (p-value)

MMM 4.04 · 10−4 0.0166 0.0357 (−0.0071, 0.0784) 0.0162 (0.5178) 0.0459 (0.9999)

AA 1.69 · 10−4 0.0296 0.0127 (−0.0310, 0.0564) 0.0132 (0.7674) 0.0600 (0.9999)

AXP 3.25 · 10−4 0.0276 0.0253 (−0.0162, 0.0669) 0.0330 (0.0081) 0.0694 (0.9999)

T 1.04 · 10−4 0.0202 0.0149 (−0.0277, 0.0575) 0.0131 (0.7773) 0.0531 (0.9999)

BAC 4.62 · 10−4 0.0351 0.0316 (−0.0102, 0.0735) 0.1076 (0.0000) 0.2309 (0.9796)

BA 3.22 · 10−4 0.0216 −0.0075 (−0.0512, 0.0361) 0.0346 (0.0047) 0.0837 (0.9999)

CAT 6.35 · 10−4 0.0227 0.0167 (−0.0266, 0.0601) 0.0290 (0.0288) 0.0713 (0.9999)

CVX 5.00 · 10−4 0.0182 −0.0441 (−0.0897, 0.0016) 0.0343 (0.0053) 0.2244 (0.9823)

CSCO 2.70 · 10−4 0.0305 0.0033 (−0.0396, 0.0463) 0.0141 (0.6923) 0.0694 (0.9999)

KO 1.73 · 10−4 0.0159 0.0187 (−0.0243, 0.0616) 0.0129 (0.7916) 0.0451 (0.9999)

DD 6.16 · 10−5 0.0201 0.0512 (0.0082, 0.0942) 0.0133 (0.7577) 0.0349 (0.9999)

XOM 5.10 · 10−4 0.0180 −0.0398 (−0.0851, 0.0056) 0.0331 (0.0079) 0.0948 (0.9999)

GE −9.15 · 10−5 0.0225 0.0143 (−0.0282, 0.0567) 0.0296 (0.0237) 0.0637 (0.9999)

HPQ 6.02 · 10−4 0.0272 0.0368 (−0.0058, 0.0793) 0.0121 (0.8509) 0.0363 (0.9999)

HD 7.33 · 10−5 0.0240 0.0585 (0.0156, 0.1013) 0.0172 (0.4431) 0.3092 (0.9311)

INTC 1.91 · 10−4 0.0290 0.0124 (−0.0311, 0.0559) 0.0227 (0.1459) 0.0498 (0.9999)

IBM 3.13 · 10−4 0.0196 0.0166 (−0.0265, 0.0598) 0.0102 (0.9542) 0.0590 (0.9999)

JNJ 2.30 · 10−4 0.0143 0.0258 (−0.0174, 0.0689) 0.0105 (0.9435) 0.1732 (0.9961)

JPM 4.64 · 10−4 0.0305 0.0588 (0.0172, 0.1004) 0.0498 (0.0000) 0.1111 (0.9999)

MCD 3.74 · 10−4 0.0179 0.0065 (−0.0374, 0.0503) 0.0364 (0.0025) 0.0899 (0.9999)

MRK −3.97 · 10−6 0.0206 −0.0148 (−0.0599, 0.0303) 0.0138 (0.7218) 0.2811 (0.9516)

MSFT 1.35 · 10−4 0.0229 0.0289 (−0.0133, 0.0711) 0.0217 (0.1850) 0.0697 (0.9999)

PFE −4.40 · 10−5 0.0187 0.0260 (−0.0172, 0.0693) 0.0299 (0.0217) 0.0661 (0.9999)

PG 2.66 · 10−4 0.0163 −0.0042 (−0.0489, 0.0405) 0.0316 (0.0127) 3.2307 (0.0209)

TRV 5.41 · 10−4 0.0229 0.0542 (0.0107, 0.0978) 0.0214 (0.1979) 0.1101 (0.9999)

UTX 5.54 · 10−4 0.0201 0.0171 (−0.0267, 0.0609) 0.0145 (0.6572) 0.5389 (0.7075)

VZ 3.81 · 10−5 0.0191 0.0308 (−0.0123, 0.0738) 0.0197 (0.2801) 0.0507 (0.9999)

WMT 1.58 · 10−4 0.0183 0.0543 (0.0111, 0.0975) 0.0214 (0.1959) 0.0528 (0.9999)

DIS 3.25 · 10−4 0.0230 0.0440 (0.0006, 0.0875) 0.0200 (0.2656) 0.0473 (0.9999)

Stdev: standard deviation
CI: confidence interval
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Table 5: Marginal VaR and Marginal AVaR for the equally weighted portfolio
consists of 29 stocks, and local optimal portfolios for VaR and AVaR.

VaR AVaR

TICKER MV aRj rank ∆w∗
j wnew

j MAV aRj rank ∆w∗
j wnew

j

MMM 0.0131 6 0.0043 0.0388 0.0418 22 0.0172 0.0517
AA 0.0130 7 −0.0127 0.0218 0.0785 4 −0.0172 0.0172

AXP 0.0148 1 −0.0070 0.0275 0.0803 3 −0.0012 0.0332
T 0.0112 18 −0.0119 0.0226 0.0458 19 −0.0171 0.0174

BAC 0.0121 13 0.0116 0.0461 0.0858 1 0.0126 0.0471
BA 0.0112 19 0.0043 0.0388 0.0523 15 0.0055 0.0400

CAT 0.0127 10 0.0172 0.0517 0.0592 8 0.0172 0.0517
CVX 0.0111 20 0.0172 0.0517 0.0471 18 0.0172 0.0517

CSCO 0.0110 21 0.0011 0.0356 0.0724 5 −0.0054 0.0291
KO 0.0090 27 0.0004 0.0349 0.0286 28 −0.0050 0.0295
DD 0.0144 4 −0.0172 0.0172 0.0530 14 −0.0172 0.0172

XOM 0.0115 16 0.0172 0.0517 0.0473 17 0.0172 0.0517
GE 0.0146 2 −0.0172 0.0172 0.0643 7 −0.0172 0.0172

HPQ 0.0104 24 0.0172 0.0517 0.0566 9 0.0172 0.0517
HD 0.0129 8 −0.0172 0.0172 0.0557 10 −0.0172 0.0172

INTC 0.0117 14 −0.0069 0.0276 0.0701 6 −0.0136 0.0209
IBM 0.0115 15 0.0026 0.0371 0.0457 20 0.0063 0.0407
JNJ 0.0095 25 0.0029 0.0374 0.0266 29 0.0019 0.0364
JPM 0.0144 3 0.0044 0.0389 0.0808 2 0.0141 0.0486
MCD 0.0087 28 0.0162 0.0506 0.0331 26 0.0163 0.0508
MRK 0.0092 26 −0.0133 0.0212 0.0418 23 −0.0172 0.0172
MSFT 0.0122 11 −0.0127 0.0218 0.0543 12 −0.0159 0.0186
PFE 0.0108 23 −0.0172 0.0172 0.0390 24 −0.0172 0.0172
PG 0.0085 29 0.0085 0.0430 0.0302 27 0.0049 0.0394

TRV 0.0122 12 0.0172 0.0517 0.0521 16 0.0172 0.0517
UTX 0.0132 5 0.0150 0.0495 0.0537 13 0.0172 0.0517
VZ 0.0114 17 −0.0172 0.0172 0.0420 21 −0.0172 0.0172

WMT 0.0108 22 −0.0065 0.0279 0.0358 25 −0.0085 0.0260
DIS 0.0127 9 −0.0004 0.0341 0.0554 11 0.0052 0.0396

MV aRj =
∂

∂wj
VaR1%(Rp(w)) and MAV aRj =

∂
∂wj

AVaR1%(Rp(w)).
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Figure 1: Empirical probability density function for daily portfolio returns and the two
probability density functions of the portfolio return obtained by the normal model and the
MNTS model.
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Figure 2: Q-Q plot between the empirical portfolio return distribution and the theoretical
portfolio return for the normal model (left) and between the empirical portfolio return
distribution and the theoretical portfolio return for the MNTS model (right).
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Figure 3: One-day portfolio VaR (left) and portfolio AVaR (right)
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