34 research outputs found

    individualized diagnostic and prognostic models for patients with psychosis risk syndromes a meta analytic view on the state of the art

    Get PDF
    Abstract Background The Clinical High Risk(CHR) paradigm has facilitated research into the underpinnings of help-seeking individuals at risk for developing psychosis, aiming at predicting and possibly preventing transition to the overt disorder. Statistical methods like machine learning(ML) and Cox regression have provided the methodological basis for this research by enabling the construction of diagnostic, i.e., distinguishing CHR from healthy individuals, and prognostic models, i.e., predicting a future outcome, based on different data modalities, including clinical, neurocognitive, and neurobiological data. However, their translation to clinical practice is still hindered by the high heterogeneity both of CHR populations and methodologies applied. Methods We systematically reviewed the literature on diagnostic and prognostic models built on Cox regression and ML. Furthermore, we conducted a meta-analysis on prediction performances investigating heterogeneity of methodological approaches and data modality. Results Forty-four articles were included covering 3707 individuals for prognostic and 1052 for diagnostic studies(572 CHR and 480 healthy controls). CHR patients could be classified against healthy controls with 78% sensitivity and 77% specificity. Across prognostic models, sensitivity reached 67% and specificity 78%. ML models outperformed those applying Cox regression by 10% sensitivity. There was a publication bias for prognostic studies, yet no other moderator effects. Conclusions Our results may be driven by substantial clinical and methodological heterogeneity currently affecting several aspects of the CHR field and limiting the clinical implementability of the proposed models. We discuss conceptual and methodological harmonization strategies to facilitate more reliable and generalizable models for future clinical practice

    Pattern of predictive features of continued cannabis use in patients with recent-onset psychosis and clinical high-risk for psychosis

    Full text link
    Continued cannabis use (CCu) is an important predictor for poor long-term outcomes in psychosis and clinically high-risk patients, but no generalizable model has hitherto been tested for its ability to predict CCu in these vulnerable patient groups. In the current study, we investigated how structured clinical and cognitive assessments and structural magnetic resonance imaging (sMRI) contributed to the prediction of CCu in a group of 109 patients with recent-onset psychosis (ROP). We tested the generalizability of our predictors in 73 patients at clinical high-risk for psychosis (CHR). Here, CCu was defined as any cannabis consumption between baseline and 9-month follow-up, as assessed in structured interviews. All patients reported lifetime cannabis use at baseline. Data from clinical assessment alone correctly classified 73% (p  0.093), and their addition to the interview-based predictor via stacking did not improve prediction significantly, either in the ROP or CHR groups (ps > 0.065). Lower functioning, specific substance use patterns, urbanicity and a lack of other coping strategies contributed reliably to the prediction of CCu and might thus represent important factors for guiding preventative efforts. Our results suggest that it may be possible to identify by clinical measures those psychosis-spectrum patients at high risk for CCu, potentially allowing to improve clinical care through targeted interventions. However, our model needs further testing in larger samples including more diverse clinical populations before being transferred into clinical practice

    T179. DO INDIVIDUALS IN A CLINICAL HIGH-RISK STATE FOR PSYCHOSIS DIFFER FROM HEALTHY CONTROLS IN THEIR CORTICAL FOLDING PATTERNS?

    Get PDF
    Background Volumetric brain differences between persons meeting criteria for a clinical high-risk state for psychosis (CHR) and healthy controls (HC) have been previously reported, yet little is known about potential abnormalities in surface-based morphological measures. Gyrification (i.e., the amount of cortical convolution) remains relatively stable across the lifespan and is minimally influenced by ubiquitous confounding factors (e.g., drug use, medication, or stress). Recently, a multi-site analysis conducted in 104 CHR persons found global increases in cortical gyrification compared to HC (Sasabayashi et al. 2017). If replicated, gyrification abnormalities in CHR could potentially serve as early neuromarkers of elevated risk, and thus could eventually be used to identify objectively and efficiently the CHR state. Methods A total of 124 CHR and 264 HC subjects were recruited as part of the PRONIA consortium (www.pronia.eu), a large-scale international longitudinal study currently consisting of 10 European sites. Cortical surfaces were reconstructed from structural MRI images using a volume-based, newly introduced technique called the Projection-Based-Thickness (PBT) as available in the SPM-based-toolbox CAT12. Local gyrification was quantified automatically across the whole brain as absolute mean curvature for each vertex of the brain surface mesh consisting of thousands of individual measurement points. Vertex-wise differences of curvature values were calculated applying a General Linear Model, corrected for age, gender and site effects. Results were investigated at corrected and uncorrected levels. Results We found no significant differences in vertex-wise gyrification between CHR and HC at either corrected or uncorrected levels (p>0.05). Further investigations of potential confounding site effects also did not reveal differences. Discussion Our preliminary findings suggest that CHR subjects do not show whole-brain gyrification abnormalities when compared with healthy subjects. These negative results agree with literature suggesting that cortical convolution might be more affected by neurodevelopmental or genetic factors, and thus deviations from normal patterns might not be detectable in heterogeneous samples of at-risk subjects wherein the etiology and ultimate prognosis is unknown. In order to better investigate differences in cortical folding and address the role of gyrification as neuroanatomical biomarker for psychosis, future investigations should focus on subgroups within CHR populations (e.g. patients groups defined by basic symptoms, ultra-high risk, or familial risk) in addition to specific analyses of individuals with higher neurodevelopmental (e.g., obstetric complications) or genetic (e.g., polygenic risk) loadings

    Modeling Social Sensory Processing During Social Computerized Cognitive Training for Psychosis Spectrum: The Resting-State Approach

    Get PDF
    Background: Greater impairments in early sensory processing predict response to auditory computerized cognitive training (CCT) in patients with recent-onset psychosis (ROP). Little is known about neuroimaging predictors of response to social CCT, an experimental treatment that was recently shown to induce cognitive improvements in patients with psychosis. Here, we investigated whether ROP patients show interindividual differences in sensory processing change and whether different patterns of SPC are (1) related to the differential response to treatment, as indexed by gains in social cognitive neuropsychological tests and (2) associated with unique resting-state functional connectivity (rsFC). Methods: Twenty-six ROP patients completed 10 h of CCT over the period of 4–6 weeks. Subject-specific improvement in one CCT exercise targeting early sensory processing—a speeded facial Emotion Matching Task (EMT)—was studied as potential proxy for target engagement. Based on the median split of SPC from the EMT, two patient groups were created. Resting-state activity was collected at baseline, and bold time series were extracted from two major default mode network (DMN) hubs: left medial prefrontal cortex (mPFC) and left posterior cingulate cortex (PCC). Seed rsFC analysis was performed using standardized Pearson correlation matrices, generated between the average time course for each seed and each voxel in the brain. Results: Based on SPC, we distinguished improvers—i.e., participants who showed impaired performance at baseline and reached the EMT psychophysical threshold during CCT—from maintainers—i.e., those who showed intact EMT performance at baseline and sustained the EMT psychophysical threshold throughout CCT. Compared to maintainers, improvers showed an increase of rsFC at rest between PCC and left superior and medial frontal regions and the cerebellum. Compared to improvers, maintainers showed increased rsFC at baseline between PCC and superior temporal and insular regions bilaterally. Conclusions: In ROP patients with an increase of connectivity at rest in the default mode network, social CCT is still able to induce sensory processing changes that however do not translate into social cognitive gains. Future studies should investigate if impairments in short-term synaptic plasticity are responsible for this lack of response and can be remediated by pharmacological augmentation during CCT

    Association between age of cannabis initiation and gray matter covariance networks in recent onset psychosis

    Get PDF
    Cannabis use during adolescence is associated with an increased risk of developing psychosis. According to a current hypothesis, this results from detrimental effects of early cannabis use on brain maturation during this vulnerable period. However, studies investigating the interaction between early cannabis use and brain structural alterations hitherto reported inconclusive findings. We investigated effects of age of cannabis initiation on psychosis using data from the multicentric Personalized Prognostic Tools for Early Psychosis Management (PRONIA) and the Cannabis Induced Psychosis (CIP) studies, yielding a total sample of 102 clinically-relevant cannabis users with recent onset psychosis. GM covariance underlies shared maturational processes. Therefore, we performed source-based morphometry analysis with spatial constraints on structural brain networks showing significant alterations in schizophrenia in a previous multisite study, thus testing associations of these networks with the age of cannabis initiation and with confounding factors. Earlier cannabis initiation was associated with more severe positive symptoms in our cohort. Greater gray matter volume (GMV) in the previously identified cerebellar schizophrenia-related network had a significant association with early cannabis use, independent of several possibly confounding factors. Moreover, GMV in the cerebellar network was associated with lower volume in another network previously associated with schizophrenia, comprising the insula, superior temporal, and inferior frontal gyrus. These findings are in line with previous investigations in healthy cannabis users, and suggest that early initiation of cannabis perturbs the developmental trajectory of certain structural brain networks in a manner imparting risk for psychosis later in life

    Pattern of predictive features of continued cannabis use in patients with recent-onset psychosis and clinical high-risk for psychosis.

    Get PDF
    Continued cannabis use (CCu) is an important predictor for poor long-term outcomes in psychosis and clinically high-risk patients, but no generalizable model has hitherto been tested for its ability to predict CCu in these vulnerable patient groups. In the current study, we investigated how structured clinical and cognitive assessments and structural magnetic resonance imaging (sMRI) contributed to the prediction of CCu in a group of 109 patients with recent-onset psychosis (ROP). We tested the generalizability of our predictors in 73 patients at clinical high-risk for psychosis (CHR). Here, CCu was defined as any cannabis consumption between baseline and 9-month follow-up, as assessed in structured interviews. All patients reported lifetime cannabis use at baseline. Data from clinical assessment alone correctly classified 73% (p  0.093), and their addition to the interview-based predictor via stacking did not improve prediction significantly, either in the ROP or CHR groups (ps > 0.065). Lower functioning, specific substance use patterns, urbanicity and a lack of other coping strategies contributed reliably to the prediction of CCu and might thus represent important factors for guiding preventative efforts. Our results suggest that it may be possible to identify by clinical measures those psychosis-spectrum patients at high risk for CCu, potentially allowing to improve clinical care through targeted interventions. However, our model needs further testing in larger samples including more diverse clinical populations before being transferred into clinical practice

    Association between age of cannabis initiation and gray matter covariance networks in recent onset psychosis

    Get PDF
    Cannabis use during adolescence is associated with an increased risk of developing psychosis. According to a current hypothesis, this results from detrimental effects of early cannabis use on brain maturation during this vulnerable period. However, studies investigating the interaction between early cannabis use and brain structural alterations hitherto reported inconclusive findings. We investigated effects of age of cannabis initiation on psychosis using data from the multicentric Personalized Prognostic Tools for Early Psychosis Management (PRONIA) and the Cannabis Induced Psychosis (CIP) studies, yielding a total sample of 102 clinically-relevant cannabis users with recent onset psychosis. GM covariance underlies shared maturational processes. Therefore, we performed source-based morphometry analysis with spatial constraints on structural brain networks showing significant alterations in schizophrenia in a previous multisite study, thus testing associations of these networks with the age of cannabis initiation and with confounding factors. Earlier cannabis initiation was associated with more severe positive symptoms in our cohort. Greater gray matter volume (GMV) in the previously identified cerebellar schizophrenia-related network had a significant association with early cannabis use, independent of several possibly confounding factors. Moreover, GMV in the cerebellar network was associated with lower volume in another network previously associated with schizophrenia, comprising the insula, superior temporal, and inferior frontal gyrus. These findings are in line with previous investigations in healthy cannabis users, and suggest that early initiation of cannabis perturbs the developmental trajectory of certain structural brain networks in a manner imparting risk for psychosis later in life

    Pattern of predictive features of continued cannabis use in patients with recent-onset psychosis and clinical high-risk for psychosis

    Get PDF
    Continued cannabis use (CCu) is an important predictor for poor long-term outcomes in psychosis and clinically high-risk patients, but no generalizable model has hitherto been tested for its ability to predict CCu in these vulnerable patient groups. In the current study, we investigated how structured clinical and cognitive assessments and structural magnetic resonance imaging (sMRI) contributed to the prediction of CCu in a group of 109 patients with recent-onset psychosis (ROP). We tested the generalizability of our predictors in 73 patients at clinical high-risk for psychosis (CHR). Here, CCu was defined as any cannabis consumption between baseline and 9-month follow-up, as assessed in structured interviews. All patients reported lifetime cannabis use at baseline. Data from clinical assessment alone correctly classified 73% (p 0.093), and their addition to the interview-based predictor via stacking did not improve prediction significantly, either in the ROP or CHR groups (ps > 0.065). Lower functioning, specific substance use patterns, urbanicity and a lack of other coping strategies contributed reliably to the prediction of CCu and might thus represent important factors for guiding preventative efforts. Our results suggest that it may be possible to identify by clinical measures those psychosis-spectrum patients at high risk for CCu, potentially allowing to improve clinical care through targeted interventions. However, our model needs further testing in larger samples including more diverse clinical populations before being transferred into clinical practice.</p

    Multimodal prognosis of negative symptom severity in individuals at increased risk of developing psychosis

    Get PDF
    Negative symptoms occur frequently in individuals at clinical high risk (CHR) for psychosis and contribute to functional impairments. The aim of this study was to predict negative symptom severity in CHR after 9 months. Predictive models either included baseline negative symptoms measured with the Structured Interview for Psychosis-Risk Syndromes (SIPS-N), whole-brain gyrification, or both to forecast negative symptoms of at least moderate severity in 94 CHR. We also conducted sequential risk stratification to stratify CHR into different risk groups based on the SIPS-N and gyrification model. Additionally, we assessed the models' ability to predict functional outcomes in CHR and their transdiagnostic generalizability to predict negative symptoms in 96 patients with recent-onset psychosis (ROP) and 97 patients with recent-onset depression (ROD). Baseline SIPS-N and gyrification predicted moderate/severe negative symptoms with significant balanced accuracies of 68 and 62%, while the combined model achieved 73% accuracy. Sequential risk stratification stratified CHR into a high (83%), medium (40-64%), and low (19%) risk group regarding their risk of having moderate/severe negative symptoms at 9 months follow-up. The baseline SIPS-N model was also able to predict social (61%), but not role functioning (59%) at above-chance accuracies, whereas the gyrification model achieved significant accuracies in predicting both social (76%) and role (74%) functioning in CHR. Finally, only the baseline SIPS-N model showed transdiagnostic generalization to ROP (63%). This study delivers a multimodal prognostic model to identify those CHR with a clinically relevant negative symptom severity and functional impairments, potentially requiring further therapeutic consideration
    corecore