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ABSTRACT

BACKGROUND: The clinical high risk (CHR) paradigm has facilitated research into the underpinnings of help-seeking
individuals at risk for developing psychosis, aiming at predicting and possibly preventing transition to the overt
disorder. Statistical methods such as machine learning and Cox regression have provided the methodological
basis for this research by enabling the construction of diagnostic models (i.e., distinguishing CHR individuals from
healthy individuals) and prognostic models (i.e., predicting a future outcome) based on different data modalities,
including clinical, neurocognitive, and neurobiological data. However, their translation to clinical practice is still
hindered by the high heterogeneity of both CHR populations and methodologies applied.

METHODS: We systematically reviewed the literature on diagnostic and prognostic models built on Cox regression
and machine learning. Furthermore, we conducted a meta-analysis on prediction performances investigating
heterogeneity of methodological approaches and data modality.

RESULTS: A total of 44 articles were included, covering 3707 individuals for prognostic studies and 1052 individuals
for diagnostic studies (572 CHR patients and 480 healthy control subjects). CHR patients could be classified against
healthy control subjects with 78% sensitivity and 77 % specificity. Across prognostic models, sensitivity reached 67%
and specificity reached 78%. Machine learning models outperformed those applying Cox regression by 10%
sensitivity. There was a publication bias for prognostic studies yet no other moderator effects.

CONCLUSIONS: Our results may be driven by substantial clinical and methodological heterogeneity currently
affecting several aspects of the CHR field and limiting the clinical implementability of the proposed models. We
discuss conceptual and methodological harmonization strategies to facilitate more reliable and generalizable models
for future clinical practice.

Keywords: Biomarkers, Clinical psychobiology, Machine learning, Predictive psychiatry, Psychosis, Translational
medicine
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Psychotic disorders are among the most disabling mental ill-
nesses and represent one of the top 20% causes of socio-
economic burden worldwide (1). Therefore, psychiatric
research has substantially invested in better early detection
strategies for these disorders (2). The clinical high risk (CHR)
concept (3) describes a mental state characterized by sub-
threshold psychotic symptoms that differ quantitatively in their
intensity from those of a full-blown psychosis (Supplement and
Table 1). The CHR paradigm has become a well-established
clinical avenue to early detect and potentially treat the psy-
chosis high-risk states. Based on the CHR paradigm, re-
searchers have investigated the nature of the prepsychotic
phase from both pathophysiological and epidemiological per-
spectives (4,5). However, these efforts have been challenged
by a constantly declining incidence rate of psychosis among
CHR patients (4,6), with roughly one third of not-transitioned
CHR cases still experiencing subthreshold symptoms,

psychosocial impairments (7), and lower level of quality of life
(8). Thus, the CHR designation delineates a mental condition
that is burdensome per se and, in addition, is associated with a
known set of comorbidities (e.g., depression, substance
abuse, anxiety disorders) (9). Therefore, predictive psychiatry
has gradually broadened its scope from detecting disease
transition to encompassing adverse outcomes more broadly
[e.g., functional deficits (10), treatment response (11), persist-
ing negative symptoms (12), psychiatric comorbidities (13)].
Considering that clinical CHR instruments alone detect only
about 47% of transitions after 3 years (14), efforts have been
made to identify potential risk factors for psychosis in several
symptomatological and biological readouts, or biomarkers, of
the disorder (15) so that individualized prognostication may be
enhanced. The presence of environmental adverse events (16),
cognitive impairments (17), neuromorphological (18), and elec-
trophysiological (19) and hematological (20) alterations, as well
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as resting-state (21) and task-related (22) neural activity and
connectivity anomalies, has been consistently reported in people
at risk for psychosis compared with healthy individuals. Some of
these phenotypes have been associated with both disease
course and transition to the overt disease (4). Therefore, the
identification of reliable markers able to distinguish between at-
risk and healthy populations may be potentially useful in clin-
ical practice to monitor disease development and treatment
outcome (23) and to obviate time-consuming CHR assessments.
The two prevailing statistical approaches to address the chal-
lenge of single-subject prediction are machine learning (ML)
methods (e.g., support vector machine, LASSO [least absolute
shrinkage and selection operator] regression, random forest),
which can handle large databases and different data domains
(24,25), and Cox proportional hazard regression, a form of
multivariate survival analysis (26) able to investigate time-to-
conversion trajectories. Recent research applying these
methods has produced prognostic models able to stratify CHR
patients into different risk classes according to their pretest risk
enrichment (27) or a set of combined predictors (28,29), or to
predict patients’ functional outcomes based on different data
modalities with performance accuracies of up to 83% (10,30).
Despite the great potential of these models, their applicability is
still hindered by the methodological heterogeneity in the field.
Indeed, CHR patients are identified by several clinical in-
struments and are characterized by subtypes with different levels
of risk (14). Moreover, models’ generalizability has been
assessed through discrepant validation strategies across
studies, ranging from the less replicable (i.e., single-site cross-
validation [CV]) to the most robust (i.e., validation to external
samples) (25). Thus, methodological approaches still lack stan-
dardized validation strategies testing clinical applicability under
real-world conditions. One way to tackle these issues is to use a
meta-analytic approach to quantitatively investigate models’
performance across different outcomes, algorithms, and data
modalities. Although important contributions to this goal have
been made (5,29,31), to the best of our knowledge, the field is
still lacking such an analysis. Investigating the field’s heteroge-
neity would allow a comprehensive assessment of accuracy and
validity of the existing diagnostic and prognostic models, an
important prerequisite for establishing reliable tools for psycho-
sis risk quantification in clinical care.

Our aim was to review the literature on ML-based and Cox
regression-based diagnostic models (i.e., discriminating CHR
individuals from healthy individuals) and prognostic models
(i.e., predictive approaches for transition or negative out-
comes). Furthermore, we performed a meta-analysis of
models’ performance, with the aim of investigating the effects
of 1) data modality, 2) type of algorithm, and 3) validation
paradigms. We expected that our results would elucidate the
complexity of methods and data domains currently used in the
predictive analytics arm of CHR research. This will facilitate a
deeper understanding of the state of the art within the field and
may clarify the bottlenecks impeding clinical translation.

METHODS AND MATERIALS

Literature Search

We conducted a systematic search of published original arti-
cles in English through June 30, 2019, using a range of search
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terms in PubMed and Scopus as well as reference lists of the
included articles (Supplement). We selected studies that re-
ported prognostic or diagnostic models constructed using ML
or Cox proportional hazard regression. Concerning diagnostic
models, we included only those that used healthy control
subjects (HCs) as a reference group to enlarge the sample size
by selecting comparable classification models across studies.
CHR included patients with a psychosis risk syndrome cate-
gorized as CHR, ultra high risk (UHR), or at-risk mental states
(Table 1) as well as those with a familial risk (FR) or 22q11.2
deletion syndrome (22g11.2DS). Studies were included if
measures of performance accuracy were reported (i.e., true
positives [TP], false positives [FP], true negatives [TN], and
false negatives [FN]) or if they could be extracted. Results of
the literature search are illustrated in the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-analyses)
flowchart (32) (Supplemental Figure S1).

A comprehensive list of all variables extracted by each
study is reported in the Supplement (second section). Perfor-
mance accuracy measures used for analyses comprised TP,
FN, TN, FP, sensitivity (SE) [TP/(TP + FN)], and specificity (SP)
[TN/(TN + FP)].

Data Analysis

The meta-analysis of diagnostic models was conducted
following previous work (33). Extracted SE and SP were con-
verted to a confusion matrix tabulated across studies. Publi-
cation bias was assessed with both overall diagnostic odds
ratio and SE. The Deeks et al. (34) method was used to ac-
count for biases associated with unequal proportions of TP
and TN cases (Supplement).

Models were built using the bivariate random effects
modeling of Reitsma et al. (2005) (35) in the mada R package
(version 0.5.8), which permits the analysis of SE and SP
separately by explicitly accounting for correlations between
each measure, incorporating precision estimates arising from
sample size differences (i.e., more precision with higher
weight), and modeling normal distributions of each with a
random effects approach. This bivariate method was used to
produce summary estimates of SE, SP, and confidence in-
tervals (Cls) that were used in forest plots, in addition to the
analysis of moderators using mixed modeling. Moderators
were age, sex, data modality, algorithm, presence of CV, type
of CHR, being a multisite study, and year of publication. For
prognostic studies, we also investigated follow-up time and
prognostic target. Moderator analyses were conducted if a
minimum of 10 models for variable were available to decrease
the standard error and maximize power in case of high
between-study variance (36) and to control for sample size and
CV scheme—the latter factor overlapping with algorithm used.
Results were corrected for false discovery rate. Likelihood ra-
tios and diagnostic odds ratios were produced using a Markov
chain Monte Carlo approach within the mada toolbox. All an-
alyses were conducted with R (version 3.6.0).

RESULTS

The systematic literature search detected 881 articles, from
which 44 were considered eligible after screening for exclu-
sion criteria, for a total of 12 diagnostic models (Table 2 and
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Table 1. Definitions of Different Psychosis Risk Syndromes Commonly Referred to as CHR States and Descriptions of the

Abbreviations and Respective Clinical Diagnostic Instruments

Concept Description Instruments
CHR Clinical high risk: psychosis risk syndrome operationalized by UHR, BS, or both diagnostic criteria All instruments below
ARMS At-risk mental state: same as the CHR state
UHR Ultra high risk: psychosis risk syndrome described by the fulfillment of APS, BLIP, or GRDS SIPS, SOPS, CAARMS
criteria
APS Attenuated psychotic symptoms: subthreshold psychotic symptoms
BLIPS Brief limited intermittent psychotic symptoms: full-blown psychotic symptoms present for a
maximum of a week
GRDS Genetic risk and deterioration syndrome: family history of psychosis or schizotypal personality
and drop in functioning or sustained low functioning®
BS Basic symptoms: subjective disturbances of cognitive, affective, and perceptive nature BSABS
COGDIS Cognitive disturbances: 9 BS describing disturbances of cognitive nature SPI-A/SPI-CY
COPER Cognitive-perceptive symptoms: 10 BS describing disturbances of a cognitive-perceptual nature
UPS Unspecific prodromal symptoms: unspecific attenuated symptoms characterizing a low-risk state BSIP

BSABS, Bonn Scale for the Assessment of Basic Symptoms; BSIP, Basel Screening Instrument for Psychosis; CAARMS, Comprehensive
Assessment of the At-Risk Mental State; SIPS, Structured Interview for the Prodromal Syndrome; SOPS, Scale of Prodromal Symptoms; SPI-A/
SPI-CY; Schizophrenia Proneness Instrument-Adult version/Schizophrenia Proneness Instrument-Child and Youth version.

4Drop in functioning is described 1) in the CAARMS as a Social and Occupational Functioning Assessment Scale (SOFAS) score =30%
compared with the previous functioning, within the last year, and for at least 1 month and 2) in the SIPS/SOPS as a 30% decrease in the Global
Assessment of Functioning scale score from premorbid baseline. A sustained low functioning is defined only in the CAARMS as a SOFAS score

=50 in the past year or longer.

Supplemental Figure S1) and 32 prognostic models (Table 3
and Supplemental Figure S1). The final sample comprised
3707 patients for prognostic studies (mean age = 20.41
years; ~58% male), of which 320 (~9%) were CHR patients
investigated for nontransition outcomes (mean age = 19.25
years; 56% male) and 1052 were used for diagnostic clas-
sification (mean age = 23.42 years; ~59% male), of which
480 (45%) were HCs. In addition, 26 studies used ML (all
diagnostic studies) and 18 were conducted with Cox
regression (Tables 2 and 3 and Supplemental Table S1).

Meta-analytic Results

CHR individuals could be classified against HCs with an
overall SE of 78% (95% Cl = 73%-83%) and an SP of
77% (95% Cl = 68%-84%), while across all prognostic

models SE reached 67% (95% Cl = 63%-70%) and SP
reached 78% (95% Cl = 73%-82%). Prognostic studies
showed a publication bias (R?> = .26, p < .001), whereas
diagnostic studies did not (R> = .07, p > .05)
(Supplemental Figure S2). Performances of both models’
categories are illustrated in two summary receiving oper-
ating characteristic curves (Figures 1 and 2) and forest
plots (Figures 3 and 4). Within diagnostic models, moder-
ator effects of type of CHR and algorithm, data modality,
presence of CV, and being a multisite study were not
investigated because less than 10 models per factor were
available (36). We found no effects of moderator variables
in either application domain (p > .10) (Supplemental
Table S2) even when splitting the sample based on CV
(Supplement).

Table 2. Summary of Diagnostic Studies Included in the Current Meta-analysis

Study CHR Type Data Modality Algorithm Outcome SE FPR
Bendfeldt et al. (37) UHR, UPS Biological: fMRI SVM Diagnosis 74 0.42
Guo et al. (39) FR Biological: fMRI SVM Diagnosis 60 0.6

Koutsouleris et al. (41) UHR, BS Clinical: cognition SVM Diagnosis 96 0.2

Koutsouleris et al. (43) UHR, BS Biological: sMRI SVM Diagnosis 89 0.2

Liu et al. (53) FR Biological: fMRI SVM Diagnosis 72 0.14
Pettersson-Yeo et al. (47) UHR Biological: sMRI SVM Diagnosis 80 0.27
Scariati et al. (48) 22g11.2DS Biological: fMRI SVM Diagnosis 81 0.12
Studerus et al. (99) UHR, UPS Clinical: cognition Random forest Diagnosis 73 0.23
Tylee et al. (49) 22g11.2DS Biological: DTI SVM Diagnosis 85 0.18
Valli et al. (50) UHR Biological: sMRI SVM Diagnosis 68 0.24
Wang et al. (42) UHR Biological: fMRI SVM Diagnosis 82 0.31
Zhu et al. (46) UHR Biological: fMRI SVM Diagnosis 72 0.53

22q11.2DS, 22g11.2 deletion syndrome; BS, basic symptoms; CHR, clinical high risk; DTI, diffusion tensor imaging; fMRI, functional magnetic
resonance imaging; FPR, false positive rate; FR, familial risk; SE, sensitivity; sMRI, structural magnetic resonance imaging; SVM, support vector

machine; UHR, ultra high risk; UPS, unspecific prodromal symptoms.
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Table 3. Summary of Prognostic Studies Included in the Current Meta-analysis

Study CHR Type Data Modality Algorithm Outcome SE FPR
Amminger et al. (11) UHR Biological: lipids GPC Functioning 83 0.25
Bedi et al. (54) UHR Clinical: speech Convex Hull Transition 100 0
Buchy et al. (100) UHR Clinical: substance use Cox regression Transition 69 0.19
Cannon et al. (101) UHR Clinical: symptoms, family risk, Cox regression Transition 67 0.47
functioning
Cannon et al. (28) UHR Multimodal: symptoms, environment, Cox regression Transition 67 0.28
genetic, cognition
Carrion et al. (74) UHR Multimodal: symptoms, environment, Cox regression Transition 58 0.27
genetic, cognition
Chan et al. (56) UHR, UPS Biological: serum LASSO regression Transition 89 0.34
Clinical: positive symptoms 78 0.4
Multimodal: serum, symptoms 89 0.21
Cornblatt et al. (58) UHR Multimodal: clinical, demographics, Cox regression Transition 60 0.03
cognition
Das et al. (55) UHR, UPS Biological: cortical gyrification Randomized trees Transition 66 0.03
de Wit et al. (30) UHR, BS Biological: sMRI, gyrification SVM Functioning 67 0.25
Clinical: disorganized speech 76 0.25
Multimodal: sMRI, clinical, 68 0.19
combination
DeVylder et al. (102) UHR Clinical: disorganized communication Cox regression Functioning 58 0.4
Dragt et al. (64) UHR Clinical: disorganized communication Cox regression Transition 50 0.09
Francesconi et al. (59) UHR Clinical: thought content, ToM, Cox regression Transition 67 0.03
processing, NSS
Fusar-Poli et al. (60) UHR-BLIPS Clinical: disorganizing symptoms LASSO Cox Transition 24 0.37
regression
Gothelf et al. (38) 229q11.2DS Biological: sMRI SVM Transition 90 0
Hoffman et al. (73) UHR Clinical: cognition Cox regression Transition 89 0.11
Kambeitz-llankovic et al. (40) UHR, BS Biological: cortical surface area SVM Functioning 79 0.15
Koutsouleris et al. (41) UHR, BS Clinical: cognition SVM Transition 80 0.25
Koutsouleris et al. (10) UHR, BS Biological: sMRI SVM Functioning (role) 67 0.53
Clinical: functioning 61 0.25
Multimodal: sMRI and functioning 59 0.3
Koutsouleris et al. (10) UHR, BS Biological: sMRI SVM Functioning (social) 80 0.28
Clinical: functioning 70 0.16
Multimodal: sMRI and functioning 83 0.18
Koutsouleris et al. (44) UHR, BS Biological: sMRI SVM Transition 76 0.15
Lavoie et al. (71) UHR Biological: blood antioxidant Cox regression Transition 91 0.33
Mechelli et al. (45) UHR Clinical: disorders of thought content, SVM Transition 69 0.39
attenuated positive symptoms, Functioning 63 0.37
functioning
Michel et al. (61) UHR, BS Clinical: SIPS, SPI-A, cognition Cox regression Transition 57 0.45
Nieman et al. (62) UHR, BS Multimodal: symptoms and ERPs Cox regression Transition 78 0.12
Perkins et al. (20) UHR Biological: blood plasma analytes Greedy algorithm Transition 60 0.1
Ramyead et al. (57) UHR, UPS Biological: EEG LASSO Transition 58 0.17
Ruhrmann et al. (65) UHR, BS Clinical: symptoms, sleep, schizotypy, Cox regression Transition 42 0.02
functioning, education
Tarbox et al. (66) UHR Clinical: alogia, anhedonia/asociality, Cox regression Transition 62 0.39
suspiciousness
Thompson et al. (67) UHR Clinical: unusual thought content, Cox regression Transition 30 0.11
functioning, family history, functional
decline
van Tricht et al. (68) UHR Biological: EEG Cox regression Transition 46 0.13
van Tricht et al. (72) UHR, BS Biological: EEG Cox regression Transition 83 0.21
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Table 3. Continued
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Study CHR Type Data Modality Algorithm Outcome SE FPR
Zarogianni et al. (51) UHR, BS Multimodal: sMRI and cognition SVM Transition 63 0.16
Zarogianni et al. (52) FR Biological: sMRI SVM Transition 76 0.23

Multimodal: sMRI and cognition 100 0.17

22911.2DS, 22g11.2 deletion syndrome; BLIPS, brief limited intermittent psychotic symptoms; BS, basic symptoms; CHR, clinical high risk; EEG,
electroencephalography; ERP, evoked response potential; FPR, false positive rate; FR, familial risk; GPC, Gaussian process classification; LASSO,
least absolute shrinkage and selection operator; NSS, neurological soft signs; SE, sensitivity; SIPS, Structured Interview for Prodromal Syndromes;
sMRI, structural magnetic resonance imaging; SPI-A, Schizophrenia Proneness Instrument-Adult version; SVM, support vector machine; ToM,
theory of mind; UHR, ultra high risk; UPS, unspecific prodromal symptoms.

Effect of Algorithm Choice

A total of 19 ML studies (73%) employed a support vector
machine algorithm (10,30,37-53), while the rest used
Gaussian process (11) or convex hull classification (54),
randomized trees (55), greedy algorithm (20), random forest
(5), or LASSO regression (56,57). All ML models were
computed with CV, whereas studies using Cox regression
applied bootstrapping (28,58-62), reported apparent results
(i.e., the model is tested in the same sample from which it
was derived) (63-68), or lacked a validation procedure.
Among the cross-validated studies, 58% applied leave-one-
out CV, 3 of which nested and 7 of which used k-fold CV (3
in its repeated nested form). Only 1 study applied a leave-
site-out CV (10), that is, a form of internal-external valida-
tion (69). Within prognostic studies, we found a main effect of
CV/algorithm on SE (p = .009; ¥2, = 6.96, p = .031); that is,
cross-validated ML models reached a higher SE (71%, 95%
Cl = 67%-74%) than Cox regression ones (61%, 95% CI =
54%-68%) (Figure 4).

Effect of Data Modality

Diagnostic models included the use of functional
(37,39,43,47,48) and structural (46,50,70) magnetic resonance
imaging (MRI) and diffusion tensor imaging (49), and behavioral
models were based on neurocognitive functions (42,43).
Models for prediction of transition to psychosis involved
blood-based (20,56,71), electrophysiological (57,68,72), and
neuroanatomical data using white and/or gray matter volume
(38,44,51) or gyrification measures (55). Clinical models were
trained on prodromal positive and negative symptoms,

Q
=
«© _|
o
£ ©
Z o |
=
@
s X
1%5) o
N
o
A Machine Learning
o _| O Summary estimate
e 5 | T T |

00 02 04 06 08 10
FPR

Figure 1. Summary receiver operating characteristic curve of diagnostic
studies. FPR, false positive rate.

functioning, and family risk associated with functional decline;
the neurocognitive modality was based on executive functions
and verbal 1Q (41) or speech features (54,73). Multimodal ap-
proaches included different combinations of clinical, neuro-
psychological, and demographic variables as well as genetic
risk (28,51,52,54,74). One model was built on P300 amplitude
from event-related potentials and sociopersonal adjustment
(62). Functional outcomes were predicted with neuroanatom-
ical (63,9,19) and blood-based biomarkers (11), and 2 studies
combined clinical and MRI measures (10,30). There were no
effects of data modality on SE (p = .172) or false positive rate
(o = .606) (Supplemental Table S2).

Effect of Sample Characteristics

Performance accuracies were not influenced by age and sex of
individuals (p > .10) (Supplemental Table S2). CHR in 86% of
the studies fulfilled the UHR criteria (75), while 6 models were
based on the genetic risk syndromes 22q11.2DS (38,48,49) or
FR (39,52,53). Because of this imbalance, we could not sta-
tistically test the effects of this variable, yet results did not
change when excluding patients with 22q11.2DS and FR
(Supplement).

Furthermore, individuals differed in their outcome defini-
tions. Poor functional outcome was defined on the Global
Assessment of Functioning scale (GAF) (cutoff: 70) (40), the
Social and Occupational Functioning Assessment Scale (score
=50) (45), the GAF modified version (76) defining nonresilience
through a cutoff of =65 (30), or the Global Functioning social/
role scale (<8) (10). In one case (11), treatment response was
operationalized as an increase of =15 points in the GAF. There
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Figure 2. Summary receiver operating characteristic curve of prognostic
studies. FPR, false positive rate; ML, machine learning.
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Author(s), Year (ref#), Algorithm Sensitivity [95% CI] Specificity [95% Cl]
Bendfeldt et al., 2015 (37), SVM —— 0.74[0.51, 0.88 ——— 0.58[0.36, 0.77
Guo et al., 2014 (39), SVM —— 0.61[0.42, 0.76 : —— 0.93[0.84, 0.97

< | Koutsouleris et al., 2009 (43), SVM : —a 0.89 [0.77, 0.95 P o——— 0.80[0.61, 0.91
Q| Liuetal., 2012 (53), SVM —— 0.72[0.52, 0.86 : —— 0.86 [0.67, 0.95
Q| Pettersson-Yeo et al., 2013 (47), SVM ;| ———=— 0.79 [0.57, 0.91 —— 0.74[0.51, 0.88
S | Scariati et al., 2014 (48), SVM : —— 0.81[0.67, 0.90 : —— 0.88[0.74, 0.95
o | Tylee etal., 2017 (49), SVM : —— 0.86 [0.74, 0.93 : — 0.83[0.66, 0.93
Valli et al., 2016 (50), SVM ——— 0.68 [0.48, 0.83 Do—— 0.76 [0.57, 0.89
Wang et al., 2016 (42), SVM —— 0.82 [0.66, 0.92 — 0.70 [0.54, 0.83

® LLZhu et al., 2019 (46), SVM : —a 0.77 [0.66, 0.85 —— 0.46 [0.35, 0.58
. [ Koutsouleris et al., 2012 (41), SVM : — 0.96 [0.86, 0.99 D o—— 0.80 [0.63, 0.90
L% L Studerus et al., 2018 (99), RF : — 0.73[0.64, 0.81 : —. 0.77 [0.68, 0.84;
RE Model for All Studies : — 0.78[0.73, 0.83] : —— 0.77 [0.68, 0.84]
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Figure 3. Forest plot of sensitivity and specificity for all diagnostic studies divided by data modality. Cl, confidence interval; RE, random effects; RF, random

forest; SVM, support vector machine.

were no significant effects on SE or false positive rate driven by
prognostic target (p = .570 or .085, respectively) or the duration
of time-to-follow-up examination (o = .637 or .305,
respectively).

DISCUSSION

We conducted a systematic review and meta-analysis on 44
studies reporting prognostic and diagnostic models for a
total of 3707 and 572 CHR individuals, respectively, with the
aim to quantitatively assess their accuracy, validity, and
heterogeneity. Our results point to good model performance
overall and to a higher SE of ML models compared with Cox
regression in prognostic studies. This effect was fully
collinear with that of CV, mainly due to the complete overlap
of this factor with algorithm type. Notably, there were no
significant effects of data modality, CHR or CV type, prog-
nostic target, or any other potential confounding variables
(e.g., age distribution, sex, year of publication, follow-up in-
terval time) on accuracy performance in our data. It is note-
worthy that in prognostic studies we observed a publication
bias, that is, the tendency for studies with smaller sample
sizes to report higher, and potentially inflated, prediction
accuracies (77). This might have affected our results (77) so
that we cannot draw robust conclusions from our meta-
analytical findings.

Methodological Differences and Pitfalls

Prognostic models employing ML outperformed those using
Cox regression by 10% SE. This finding may have resulted
from a complex interplay of cohort-related and methodological
heterogeneity. Notably, there was a complete overlap between
the statistical method chosen and implementation of CV, that
is, all ML models were cross-validated, while only 6 Cox
regression studies applied bootstrapping as the validation
procedure. Because the choice of a reliable validation method
strongly determines both performance and generalizability of
models (25), this methodological discrepancy may have biased
our findings. Validation issues were also present in studies
employing ML for prognostic modeling. First, 53% of these
studies applied CV without nesting and repetitions, which is
known to generate overoptimistic results due to high variability
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and information leakage between training and testing data
during model optimization (78). The extended use of this vali-
dation scheme may explain the higher SE found in ML studies.

Second, several Cox regression studies included in this
meta-analysis either did not report probability thresholds or
chose a priori optimal thresholds from the data. While ML’s
lack of homogeneous thresholds is mainly handled via CV
schemes averaging performances across folds and repetitions,
the use of p values or data-derived thresholds without a proper
training—test separation might have inflated Cox regression
models’ performance (63).

Third, preprocessing approaches varied across studies. In
3 cases, for instance, prognostic features were derived from
univariate group comparisons or by applying principal
component analysis outside the CV scheme (20,43,53),
which is a known source of information leakage, because
variance from the training sample data is carried into the test
sample (25). One model was constructed on a nonrandom
sampling of the training set (49), while another model clas-
sified patients at UHR from HCs based on the brain pattern
shared by patients at UHR and with first-episode psychosis
(46). These approaches, as well as the use of stepwise
methods in Cox regression models, entail sample-driven
variance and, therefore, could lead to good predictive per-
formance, but arguably they should be tested for generaliz-
ability in an external dataset. Valuable alternatives are
literature-based feature selection and embedded feature
optimization, where the intrinsic optimal feature configuration
is learned by the model itself (79).

It should be noted that some of the studies included in our
meta-analytic contribution had very low sample sizes. One
study had N < 20, while 2 diagnostic and 21 prognostic
models had, respectively, less than 20 CHR individuals or
CHR with poor outcome. Findings from these studies might
be consistent with literature demonstrating a publication
bias toward increased accuracy with reduced sample size
(80), possibly caused by overfitting. This indicates the need
for future ML research to employ larger, preferably multisite
samples for both diagnostic and prognostic purposes (80).

Taken together, these issues may mirror the heterogeneity
of methodological procedures within the field. Arguably, the
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Author(s), Year (ref#), Algorithm Sensitivity [95% CI] Specificity [95% Cl]
Cox Regression : :

of Lavoie et al., 2017 (71), Cox 0.91 [0.68, 0.98] e 0.66 [0.45, 0.82]

@ | van Tricht et al., 2014 (72), Cox : 0.80 [0.60, 0.92] § [E— 0.79 [0.69, 0.86]

L van Tricht et al., 2010 (68), Cox b 0.45 [0.25, 0.66] : —= 0.85[0.72, 0.93]

Buchy et al., 2014 (100), Cox 0.68 [0.50, 0.82] : = 0.81[0.73, 0.86]

Cannon et al., 2008 (101), Cox : 0.67 [0.56, 0.76] [ 0.53 [0.46, 0.60]

DeVylder et al., 2014 (102), Cox ; 0.57 [0.39, 0.74] F—a—] 0.59 [0.48, 0.70]

— | Dragtetal., 2011 (64), Cox . 0.50 [0.30, 0.70] —= 0.90 [0.79, 0.95]

8 Francesconi et al., 2017 (59), Cox - 0.66 [0.45, 0.82] : (] 0.96 [0.90, 0.99]

‘©| Fusar-Poli et al., 2017 (60), Cox : 0.74 [0.56, 0.87] —— 0.63[0.50, 0.75]

O| Hoffman et al., 2007 (73), Cox - 0.85 [0.54, 0.96] : —a— 0.88[0.67, 0.96]

Michel et al., 2014 (61), Cox : 0.57 [0.42, 0.70] —— 0.55[0.41, 0.67]

Ruhrmann et al., 2010 (65), Cox 0.43[0.29, 0.59] &) 0.98 [0.94, 0.99]

Tarbox et al., 2013 (66), Cox 0.61[0.50, 0.71] — 0.61[0.54, 0.67]

L, Thompson et al., 2011 (67), Cox —=——o 0.30[0.18, 0.45] —= 0.88[0.78, 0.94]

-=| Cannon et al., 2016 (28), Cox : 0.66 [0.56, 0.76] : - 0.72[0.68, 0.76]

S| Carrion et al., 2016 (74), Cox P 0.58 [0.32, 0.80] : [ 0.73[0.66, 0.79]

= Cornblatt et al., 2015 (58), Cox 0.61[0.42, 0.77] = 0.96 [0.89, 0.99]

L Nieman et al., 2014 (62), Cox 0.76 [0.54, 0.90] —a—] 0.88[0.75, 0.94]

RE Model for Cox Regression : 0.61 [0.54, 0.68] : < 0.81[0.72, 0.88]
Machine Learning

[ Amminger et al., 2015 (11), GPC : 0.81[0.64, 0.91] e — | 0.73[0.46, 0.90]

Chan et al., 2015 (56), LASSO : 0.87 [0.65, 0.96] — 0.65[0.53, 0.76]

Das et al., 2018 (55), RF ey 0.68 [0.44, 0.85] : ] 0.96 [0.88, 0.99]

de Wit et al., 2017 (30), SVM —_—— 0.64 [0.41, 0.82] — 0.74 [0.54, 0.87]

Gothelf et al., 2011 (38), SVM N 0.86 [0.57, 0.97] P 0.95[0.66, 0.99]

% Kambeitz-llankovic et al., 2016 (40), SVM ~ }——— = 0.77 [0.51, 0.91] — 0.82[0.56, 0.94]

Koutsouleris et al., 2015 (44), SVM : 0.75[0.58, 0.86] — 0.84[0.68, 0.93]

Koutsouleris et al., 2018 (10), SVM : 0.80 [0.69, 0.88] —=—] 0.72[0.58, 0.82]

Koutsouleris et al., 2018 (10), SVM : 0.66 [0.55, 0.76] b 0.47 [0.34, 0.61]

Perkins et al., 2015 (20), Greedy 0.59 [0.42, 0.74] —=q 0.89 [0.76, 0.95]

Ramyead et al.., 2016 (57), LASSO  }——— = 0.55 [0.34, 0.75] [ 0.82[0.67, 0.91]

L Zarogianni et al., 2017 (52), SVM E 0.75[0.52, 0.89] —= 0.77 [0.64, 0.86]

[ Bedi et al., 2015 (54), CHC —_—a 0.92 [0.52, 0.99] —a 0.98 [0.86, 1.00]

Chan et al., 2015 (56), LASSO : 0.76 [0.54, 0.90] F—a— 0.60 [0.47, 0.72]

‘©| de Witetal, 2017 (30), SVM : 0.75[0.52, 0.89] —a— 0.74 [0.54, 0.87]

g Koutsouleris et al., 2018 (10), SVM 0.69 [0.58, 0.79] —a— 0.83[0.71, 0.91]

6 Koutsouleris et al., 2018 (10), SVM 5 0.61[0.49, 0.71] —a 0.74 [0.60, 0.84]

Koutsouleris et al., 2012 (41), SVM : 0.78 [0.54, 0.92] . 0.74[0.52, 0.88]

Mechelli et al., 2017 (45), SVM : 0.62[0.48, 0.74] e 0.62[0.48, 0.74]

L Mechelli et al., 2017 (45), SVM : 0.69 [0.59, 0.77] | 0.60 [0.51, 0.70]

Chan et al., 2015 (56), LASSO : 0.87 [0.65, 0.96] JE— 0.79 [0.67, 0.87]

.| deWitetal., 2017 (30), SVM e 0.69 [0.46, 0.86] —a 0.78[0.59, 0.90]

§ Koutsouleris et al., 2018 (10), SVM : 0.83[0.72, 0.90] —a 0.81[0.69, 0.90]

=| Koutsouleris et al., 2018 (10), SVM : 0.59 [0.48, 0.70] —= 0.70[0.56, 0.81]

Zarogianni et al., 2017 (52), SVM : 0.97[0.78, 1.00] —a— 0.82[0.70, 0.90]

L Zarogianni et al., 2017 (51), SVM — - 0.61[0.36, 0.81] —a— 0.80[0.60, 0.92]

RE Model for Machine Learning : 0.71[0.67, 0.74] L 2 0.75[0.71, 0.80]

RE Model for All Studies 0.67 [0.63, 0.70] & 0.78[0.73, 0.82]
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Figure 4. Forest plot of sensitivity and specificity for all prognostic studies divided by algorithm and data modality. CHC, convex hull classification; Cl,
confidence interval; GPC, Gaussian process classifier; LASSO, least absolute shrinkage and selection operator regularized regression; RE, random effects; RF,
random forest; SVM, support vector machine.

application of ML techniques to diagnosis and prognosis in
psychiatry is still relatively young (24), so conventions and
standard operating procedures facilitating model comparability
and replicability have not become generally accepted. Our
findings highlight the urgency to develop such guidelines for

the construction of prognostic and diagnostic models (81). As
indicated in Table 4, the most important ones are 1) the
implementation of repeated nested CV, internal-external, or
external validation schemes and 2) the full and strict embed-
ding of all preprocessing or feature engineering procedures

Biological Psychiatry m m, 2020; m:m—m www.sobp.org/journal 7


http://www.sobp.org/journal

Psychiatry

Meta-analysis of Psychosis Risk Syndrome Prediction Models

Table 4. Conceptual and Methodological Guidelines for Construction of Diagnostic and Predictive Models Implementable in

Real-Life Clinical Practice

Guidelines

Practical Suggestions

Conceptual Guidelines

Harmonization of the CHR definition and
diagnostic instruments

adverse outcomes

Broaden the scope of prediction to
nontransition outcomes

predictive studies

Methodological Guidelines

Increase in sample size

Create a harmonized early recognition instrument that encompasses those at-risk definitions and criteria from
the existing diverse inventories that parsimoniously delineate the CHR state and also are predictive of its

Harmonize social and occupational outcomes, pharmacological and nonpharmacological treatment response
criteria, and definitions of persistence or remission of symptoms and use these end points in future

Facilitate collaborative science approaches that enable the harmonization of end-point definitions and the

external validation of predictive models
Get access to open-source databases

Study design harmonization
implement k-fold CV

Employ reliable methodologies (CV and external validation are recommended); avoid leave-one-out CV;

Embed all preprocessing or feature engineering procedures within the chosen CV scheme
Enforce preregistration processes (as in clinical trials) to facilitate monitoring of standardized data acquisition,
model discovery, and validation plan

Common modeling platforms and open-
source model libraries

Large-scale, consortium-wide international model benchmarking

CHR, clinical high risk; CV, cross-validation.

within the CV scheme. Researchers, funding organizations,
and journals should support efforts to standardize approaches,
favoring the importance of thorough validation over model
performance per se.

Type of Data Modality

Overall, most models were constructed using biological (44 %)
and clinical (38%) data, with only 10 prognostic models based
on more than one data modality. Most diagnostic models used
MRI data (83%), whereas prognostic models showed a higher
variability. Prognostic models of psychosis transition included
molecular, neuroanatomical, electrophysiological, neuropsy-
chological, and clinical data modalities, most of the latter
trained on prodromal positive and negative symptoms, func-
tioning, and FR associated with functional decline. We found
no significant differences in predictive accuracy when
comparing data modalities within and between algorithms.

This result may mirror a real lack of significant differences in
biomarker type when distinguishing the CHR state from the
norm or predicted outcome. However, because only 4 prog-
nostic studies tested the relative and combined predictive
ability of different data modalities on the same individuals
(10,30,52,56), and because data modalities are overall under-
or overrepresented, the currently available studies do not allow
this conclusion to be drawn. Further research directly
comparing performance across data modalities, followed by
meta-analytic evaluation, is warranted.

Alternatively, our results may reflect the complexity of the
multifaceted architecture of psychosis risk (82), which might be
only partly captured by single data modalities. Indeed, a
neuroanatomical biomarker might be informative for genetically
or pathophysiologically driven mechanisms given that genes’
effect may be closer to brain than to behavior (83); on the other
hand, neurocognitive performance might explain more envi-
ronmentally driven variance relating, for example, to socioeco-
nomic status (84). Hence, a multimodal approach may be a

8 Biological Psychiatry m m, 2020; m:m—m www.sobp.org/journal

viable way to reconcile and leverage information from single risk
domains. Powerful new methodologies able to combine multiple
sources of data, such as similarity network fusion (85), might be
suitable for this purpose. Indeed, research has shown that a
combination of clinical variables and structural brain imaging
data might represent a promising multimodal framework for
psychosis prediction (10,23,31). Along these lines, Schmidt
et al. (29) devised a 3-stage sequential testing paradigm, which
in theory reaches nearly perfect positive predictive value when
individuals are tested on one multimodal modality (i.e., clinical
and electroencephalography) and two biological data modalities
(i.e., structural MRI and blood based). However, these findings
are simulated, have not been confirmed in empirical studies yet,
and did not follow a thorough meta-analytical approach like the
one implemented here.

Alternatively, similar performance of tested data modalities
may have resulted from the variability induced by higher-order
algorithm-data validation interactions. To thoroughly compare
models originating from different data spaces, methodological
consensus guidelines are urgently needed in the precision
psychiatry field. A strict cross-study standardization, in terms
of both data definitions and algorithm implementations, may
shed light on real phenotypic and neurobiological differences
and thus lead to unique insights into the pathology of emerging
psychosis.

At-Risk State/Sample Differences

Another source of heterogeneity affecting our results may be
due to clinical sample definitions. Most of the at-risk in-
dividuals in our sample fulfilled the UHR criteria, while a mi-
nority (5.7%) had an FR or a 22g11.2DS diagnosis, which
prevented us from quantitatively estimating the effects of risk
group designation. However, it is noteworthy that two of the
instruments operationalizing UHR criteria (i.e., SIPS [Struc-
tured Interview for Prodromal Syndromes] and CAARMS
[Comprehensive Assessment of At-Risk Mental States])
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include a genetic risk group (i.e., the genetic risk deteriora-
tion syndrome) and that two studies in our sample included
FRs and deletion syndrome patients with subthreshold psy-
chotic symptoms (49,52). This diagnostic overlap might
create, on the one hand, a further source of variability and, on
the other, a tangible bridge to the well-known heterogeneity
among CHR individuals. This issue was tackled by a recent
study (14) that provided evidence of a differential risk level
within the subcategories of the CHR construct. Hence,
further research should put effort into revising the CHR
paradigm toward a more parsimonious definition based on
one gold-standard clinical instrument and clear-cut biolog-
ical underpinnings.

Furthermore, in our sample, criteria to define transition
to psychosis or poor functional outcome differed both in
their operationalization and in the threshold used within a
specific diagnostic instrument. Another issue in the vari-
ability of outcome definition is dichotomization of contin-
uous variables such as GAF and global functioning, which
has proven to be a potential source of bias in prognostic
models (63,86). It is noteworthy that 1 study (45)
addressed this point by conducting an additional analysis
to investigate the continuous nature of functioning by us-
ing a support vector regression algorithm. The predict-
ability of nontransition outcomes in at-risk individuals is
still relatively unexplored. Therefore, there is a need for
clinical consensus on relevant nontransition outcomes and
how they should be assessed. Additionally, adopting
adaptive risk models, which capture the high extent of
variability of symptoms and risk factors over time (87), may
tackle this complexity and provide more precise mea-
surements of developing negative outcomes, as proposed
by digital phenotyping approaches (88).

Notably, CHR populations differ not only in their clinical
picture but also along demographic and sociocultural di-
mensions (89). For instance, American CHR individuals are
usually younger (~16-18 years) than their European counter-
parts (~22-24 years). Interestingly, recent research has shown
that neuroanatomical development and risk for developing
psychosis are interconnected (90,91). This evidence might also
reveal neurobiological processes leading to neurocognitive
changes in the CHR state (92,93). Overall, our findings suggest
that the gestalt of the CHR state might be successfully
modeled only if multiple behavioral and neurobiological mod-
erators are conjointly considered using standardized multi-
variate methods, thereby fully embracing the complexity of this
risk paradigm.

Limitations

Our meta-analysis was driven by the primary aim to evaluate
the potential applicability of diagnostic and prognostic models
in real-life clinical practice. Therefore, we focused only on the
two currently prevailing methodological approaches (i.e., ML
and Cox regression). Importantly, we might have missed sig-
nificant results by excluding other more traditional statistical
methods such as logistic regression (15,63), which has often
been implemented for prognostic purposes (15,63), eventually
showing higher performance than ML (94). Nevertheless, ML
approaches enable the investigation of the intrinsic complexity
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of specific data types (e.g., brain features) and are devised for
better generalizability.

Another limitation might be the lack of investigation into
symptomatology, treatment, substance use, or additional
comorbidities, which was due to missing or inconsistent
information for several studies. Indeed, already in patients
with first-episode psychosis, antipsychotic treatment has
been shown to have neuroanatomical effects (95), and
continuous cannabis use has been shown to lead to worse
outcomes (96). It is also plausible that the high variability of
symptoms and clinical comorbidities in the CHR population
(13) has further introduced spurious variance in our analyses.

Furthermore, the CHR paradigm has proven to have intrinsic
limitations. On the one hand, its predictive power might be
partly driven by the so-called pretest risk enrichment; that is,
the assessment of at-risk criteria in a specific constellation of
help-seeking individuals (97,98). On the other hand, it might
not capture the full extent of risk in the population, as a recent
study pointed out by reporting that most transitions occurred
in patients with an unclear psychiatric diagnosis or no CHR
status (9). Because most prognostic models have been
developed for the CHR state, their usefulness outside of this
category should be intensively investigated.

Lastly, given the heterogeneity of our data and the publi-
cation bias detected, our meta-analysis is inherently limited to
a description of, not an ultimate decision on, which diagnostic
and prognostic models are sufficiently reliable to be applied in
clinical settings.

Conclusions

A comprehensive paradigm shift is required to enable the
clinical application of diagnostic and prognostic models for the
CHR state. First, the field requires study design harmonization,
which demands reliable methodological approaches such as
CV or external validation to ensure generalizability. An
approach to enhance the studies’ potential for real-life imple-
mentation could be a preregistration process similar to clinical
trials, during which their validity in terms of standardized data
acquisition, model discovery, and validation could be moni-
tored. Furthermore, large-scale international model bench-
marking at the level of external model validation can be
achieved only by constructing common modeling platforms
and open source model libraries. The National Institute of
Mental Health’s Harmonization of At-Risk Multisite Observa-
tional Networks for Youth (HARMONY) is a first step in the
above direction. Consortium-wise coordinated work will also
allow strategic methodological testing; that is, controlled
comparison of algorithms, preprocessing and feature optimi-
zation pipelines, and multiple data modalities (for an overview
of conceptual and methodological guidelines, see Table 4).
Multimodal ML carries the challenging responsibility to better
disentangle the complex architecture of psychosis risk within a
clinical consensus environment. This should involve efforts to
unify the CHR definition, both theoretically and practically, and
also to embrace relevant nontransition outcomes to broaden
the prognostic scope. Future studies are warranted to inves-
tigate whether harmonizing procedures within precision psy-
chiatry will lead to more reliable and reproducible translational
research in the field.
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