99 research outputs found

    Developing a model for e-prints and open access journal content in UK further and higher education

    Get PDF
    A study carried out for the UK Joint Information Systems Committee examined models for the provision of access to material in institutional and subject-based archives and in open access journals. Their relative merits were considered, addressing not only technical concerns but also how e-print provision (by authors) can be achieved – an essential factor for an effective e-print delivery service (for users). A "harvesting" model is recommended, where the metadata of articles deposited in distributed archives are harvested, stored and enhanced by a national service. This model has major advantages over the alternatives of a national centralized service or a completely decentralized one. Options for the implementation of a service based on the harvesting model are presented

    Early detection and differentiation of microbial spoilage of bread using electronic nose technology

    Get PDF
    This study investigated the potential for use of electronic noses (e-noses) for early rapid detection and differentiation of bread spoilage before visible signs of growth occur. After 24 h incubation at 25°C it was possible to distinguish Penicillium verrucosum, Aspergillus ochraceus, and Pichia anomala from 3 different species of filamentous fungi before visible growth was observed on unmodified wheat agar using a conducting polymer based e-nose (BH114). Discrimination of controls was possible after 48 h. The BH114 e-nose was able to differentiate between Pseudomonas fragi, Saccharomyces cerevisiae and P. verrucosum growing on 0.97 aw modified flour-based media after only 24 h. The BH114 e-nose was able to discriminate between P. fragi and S. cerevisiae growing in broth cultures and between different aw controls in exponential growth (13.5 h). Discrimination of Staphylococcus aureus growing in different aw broths and from uninoculated controls was achieved after 4.5 h. The BH114 e-nose was also able to detect and differentiate microbial spoilage in situ using bread analogues. Discrimination was improved using an incubation temperature of 25°C when compared to 15°C. Discrimination of microbial and physiological (enzymic) spoilage of bread analogues was possible using e-nose technology, cfu counts and gas chromatograph-mass spectrometry (GC-MS) using an initial population of 106 spores/cells ml-1. After 48 h differentiation of the spoilage types and between some of the microbial spoilage organisms was possible using the e-nose. A significant increase in populations was noted between 24 and 48 h. There were significant differences between microbial populations detected after 48 and 72 h. Analysis of volatile compounds produced, using GC-MS, showed that after 24 h P. anomala was the only treatment to produce 2-propanol, ethyl acetate, and pentanol. P. anomala also produced greater amounts of 3-methylbutanol when compared to P. verrucosum, B. subtilis, lipoxygenase spoilage and controls. Differentiation between toxigenic and non-toxigenic strains of Aspergillus parasiticus in vitro was not achieved. However, in vitro on unmodified 2% wheat agar it was possible to differentiate a non-toxigenic P. verrucosum strain from 4 citrinin producing strains and controls using the BH114 e-nose. On bread analogues it was possible to discriminate two ochratoxin A (OTA) producing P. verrucosum strains after 24 h using an initial population of 106 spore ml-1. Increased incubation resulted in only controls being discriminated. Using a lower initial population of 103 spores ml-1 only controls were discriminated after 24 h. However, after 48 h an OTA producing strain could also be differentiated. The potential for use of e-noses as a tool for screening novel antioxidants was also investigated. It was possible to differentiate between broth samples with and without the antioxidants propyl paraben and butylated hydroxyanisole using both the conductance based e-nose (BH114) and a metal oxide and metal ion based e-nose (NST3220 lab emission analyser). When samples without antioxidant were removed it was possible to differentiate treatments containing antioxidant that had been inoculated with micro-organism and those that had not. The e-noses were also able to discriminate between sample times. Microbial populations and carbon dioxide levels increased with incubation time. P. verrucosum and P. anomala populations were greater in treatments without antioxidant whereas B. subtilis populations were greater in 0.97 aw treatments containing antioxidant. CO2 production was greater in inoculated treatments without an antioxidant except at 0.95 aw P. verrucosum produced greater volumes in the presence of the antioxidant. Using natural bread cross validation studies of 4 unknown contaminants (P. anomala, P. verrucosum and B. subtilis and controls) was performed. This showed that using initial populations of 103 spores/cells ml-1 the BH114 e-nose was able to differentiate between all the unknown treatments after 48 h and the NST3220 lab emission analyser after 72 h. CO2 production could be used to detect controls but it was not possible to differentiate between the micro-organisms.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Exploring the Efficacy of Nile Red in Microplastic Quantification: A Costaining Approach

    Get PDF
    The presence of microplastic particles ([less than]5 mm) in the environment has generated considerable concern across public, political, and scientific platforms. However, the diversity of microplastics that persist in the environment poses complex analytical challenges for our understanding of their prevalence. The use of the dye Nile red to quantify microplastics is increasingly common. However, its use in microplastic analysis rarely accounts for its affinity with the breadth of particles that occur in environmental samples. Here, we examine Nile red’s ability to stain a variety of microplastic particles and common natural and anthropogenic particles found in environmental samples. To better constrain microplastic estimates using Nile red, we test the coapplication of a second stain that binds to biological material, 4′,6-diamidino-2-phenylindole (DAPI). We test the potential inflation of microplastic estimates using Nile red alone by applying this costaining approach to samples of drinking water and freshwater. The use of Nile red dye alone resulted in a maximum 100% overestimation of microplastic particles. These findings are of particular significance for the public dissemination of findings from an emotive field of study

    Evaluation of Age Better in Sheffield - Third annual report: Peer Research

    Get PDF

    ThX - a next-generation probe for the early detection of amyloid aggregates.

    Get PDF
    Neurodegenerative diseases such as Alzheimer's and Parkinson's are associated with protein misfolding and aggregation. Recent studies suggest that the small, rare and heterogeneous oligomeric species, formed early on in the aggregation process, may be a source of cytotoxicity. Thioflavin T (ThT) is currently the gold-standard fluorescent probe for the study of amyloid proteins and aggregation processes. However, the poor photophysical and binding properties of ThT impairs the study of oligomers. To overcome this challenge, we have designed Thioflavin X, (ThX), a next-generation fluorescent probe which displays superior properties; including a 5-fold increase in brightness and 7-fold increase in binding affinity to amyloidogenic proteins. As an extrinsic dye, this can be used to study unique structural amyloid features both in bulk and on a single-aggregate level. Furthermore, ThX can be used as a super-resolution imaging probe in single-molecule localisation microscopy. Finally, the improved optical properties (extinction coefficient, quantum yield and brightness) of ThX can be used to monitor structural differences in oligomeric species, not observed via traditional ThT imaging

    Spatial and Genetic Epidemiology of Hookworm in a Rural Community in Uganda

    Get PDF
    There are remarkably few contemporary, population-based studies of intestinal nematode infection for sub-Saharan Africa. This paper presents a comprehensive epidemiological analysis of hookworm infection intensity in a rural Ugandan community. Demographic, kinship, socioeconomic and environmental data were collected for 1,803 individuals aged six months to 85 years in 341 households in a cross-sectional community survey. Hookworm infection was assessed by faecal egg count. Spatial variation in the intensity of infection was assessed using a Bayesian negative binomial spatial regression model and the proportion of variation explained by host additive genetics (heritability) and common domestic environment was estimated using genetic variance component analysis. Overall, the prevalence of hookworm was 39.3%, with the majority of infections (87.7%) of light intensity (≤1000 eggs per gram faeces). Intensity was higher among older individuals and was associated with treatment history with anthelmintics, walking barefoot outside the home, living in a household with a mud floor and education level of the household head. Infection intensity also exhibited significant household and spatial clustering: the range of spatial correlation was estimated to be 82 m and was reduced by a half over a distance of 19 m. Heritability of hookworm egg count was 11.2%, whilst the percentage of variance explained by unidentified domestic effects was 17.8%. In conclusion, we suggest that host genetic relatedness is not a major determinant of infection intensity in this community, with exposure-related factors playing a greater role

    Toxic ignorance and right-to-know in biomonitoring results communication: a survey of scientists and study participants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exposure assessment has shifted from pollutant monitoring in air, soil, and water toward personal exposure measurements and biomonitoring. This trend along with the paucity of health effect data for many of the pollutants studied raise ethical and scientific challenges for reporting results to study participants.</p> <p>Methods</p> <p>We interviewed 26 individuals involved in biomonitoring studies, including academic scientists, scientists from environmental advocacy organizations, IRB officials, and study participants; observed meetings where stakeholders discussed these issues; and reviewed the relevant literature to assess emerging ethical, scientific, and policy debates about personal exposure assessment and biomonitoring, including public demand for information on the human health effects of chemical body burdens.</p> <p>Results</p> <p>We identify three frameworks for report-back in personal exposure studies: clinical ethics; community-based participatory research; and citizen science 'data judo.' The first approach emphasizes reporting results only when the health significance of exposures is known, while the latter two represent new communication strategies where study participants play a role in interpreting, disseminating, and leveraging results to promote community health. We identify five critical areas to consider in planning future biomonitoring studies.</p> <p>Conclusion</p> <p>Public deliberation about communication in personal exposure assessment research suggests that new forms of community-based research ethics and participatory scientific practice are emerging.</p
    corecore