188 research outputs found

    The landscape ecological impact of afforestation on the British uplands and some initiatives to restore native woodland cover

    Get PDF
    The majority of forest cover in the British Uplands had been lost by the beginning of the Nineteenth Century, because of felling followed by overgrazing by sheep and deer. The situation remained unchanged until a government policy of afforestation, mainly by exotic conifers, after the First World War up to the present day. This paper analyses the distribution of these predominantly coniferous plantations, and shows how they occupy specific parts of upland landscapes in different zones throughout Britain. Whilst some landscapes are dominated by these new forests, elsewhere the blocks of trees are more localised. Although these forests virtually eliminate native ground vegetation, except in rides and unplanted land, the major negative impacts are at the landscape level. For example, drainage systems are altered and ancient cultural landscape patterns are destroyed. These impacts are summarised and possible ways of amelioration are discussed. By contrast, in recent years, a series of projects have been set up to restore native forest cover, as opposed to the extensive plantations of exotic species. Accordingly, the paper then provides three examples of such initiatives designed to restore native forests to otherwise bare landscapes, as well as setting them into a policy context. Whilst such projects cover a limited proportion of the British Uplands they nevertheless restore forest to landscapes at a local level

    Permeability of anti-fouling PEGylated surfaces probed by fluorescence correlation spectroscopy

    Get PDF
    The present work reports on in situ observations of the interaction of organic dye probe molecules and dye-labeled protein with different poly(ethylene glycol) (PEG) architectures (linear, dendron, and bottle brush). Fluorescence correlation spectroscopy (FCS) and single molecule event analysis were used to examine the nature and extent of probe朠EG interactions. The data support a sieve-like model in which size-exclusion principles determine the extent of probe朠EG interactions. Small probes are trapped by more dense PEG architectures and large probes interact more with less dense PEG surfaces. These results, and the tunable pore structure of the PEG dendrons employed in this work, suggest the viability of electrochemically-active materials for tunable surfaces

    Optimisation of pharmacy content in clinical cancer research protocols: Experience of the United Kingdom Chemotherapy and Pharmacy Advisory Service

    Get PDF
    Background: Clarity and accuracy of the pharmacy aspects of cancer clinical trial protocols is essential. Inconsistencies and ambiguities in such protocols have the potential to delay research and jeopardise both patient safety and collection of credible data. The Chemotherapy and Pharmacy Advisory Service was established by the UK National Cancer Research Network, currently known as National Institute for Health Research Clinical Research Network, to improve the quality of pharmacy-related content in cancer clinical research protocols. This article reports the scope of Chemotherapy and Pharmacy Advisory Service, its methodology of mandated protocol review and pharmacy-related guidance initiatives and its current impact. Methods: Over a 6-year period (2008–2013) since the inception of Chemotherapy and Pharmacy Advisory Service, cancer clinical trial protocols were reviewed by the service, prior to implementation at clinical trial sites. A customised Review Checklist was developed and used by a panel of experts to standardise the review process and report back queries and inconsistencies to chief investigators. Based on common queries, a Standard Protocol Template comprising specific guidance on drug-related content and a Pharmacy Manual Template were developed. In addition, a guidance framework was established to address ‘ad hoc’ pharmacy-related queries. The most common remarks made at protocol review have been summarised and categorised through retrospective analysis. In order to evaluate the impact of the service, chief investigators were asked to respond to queries made at protocol review and make appropriate changes to their protocols. Responses from chief investigators have been collated and acceptance rates determined. Results: A total of 176 protocols were reviewed. The median number of remarks per protocol was 26, of which 20 were deemed clinically relevant and mainly concerned the drug regimen, support medication, frequency and type of monitoring and drug supply aspects. Further analysis revealed that 62% of chief investigators responded to the review. All responses were positive with an overall acceptance rate of 89% of the proposed protocol changes. Conclusion: Review of pharmacy content of cancer clinical trial protocols is feasible and exposes many undetected clinically relevant issues that could hinder efficient trial conduct. Our service audit revealed that the majority of suggestions were effectively incorporated in the final protocols. The refinement of existing and development of new pharmacy-related guidance documents by Chemotherapy and Pharmacy Advisory Service might aid in better and safer clinical research

    Surveillance of molecular markers for antimalarial resistance in Zambia: Polymorphism of Pfkelch 13, Pfmdr1 and Pfdhfr/Pfdhps genes

    Get PDF
    Antimalarial resistance is an inevitable feature of control efforts and a key threat to achieving malaria elimination. Plasmodium falciparum, the deadliest of several species causing human malaria, has developed resistance to essentially all antimalarials. This study sought to investigate the prevalence of molecular markers associated with resistance to sulfadoxine-pyrimethamine (SP) and artemether-lumefantrine (AL) in Southern and Western provinces in Zambia. SP is used primarily for intermittent preventive treatment during pregnancy, while AL is the first-line antimalarial for uncomplicated malaria in Zambia. Blood samples were collected from household members of all ages in a cross-sectional survey conducted during peak malaria transmission, April to May of 2017, and amplified by polymerase chain reaction (PCR). Amplicons were then analysed by high-resolution melt following PCR to identify mutations associated with SP resistance in the P. falciparum dihydrofolate reductase (Pfdhfr) and P. falciparum dihydropteroate synthase (Pfdhps) genes and lumefantrine resistance in the P. falciparum multi-drug resistance 1 (Pfmdr1) gene. Finally, artemether resistance was assessed in the P. falciparum Kelch 13 (PfK13) gene using nested PCR followed by amplicon sequencing. The results showed a high frequency of genotypic-resistant Pfdhps A437G (93.2%) and Pfdhfr C59R (86.7%), N51I (80.9%), and S108N (80.8%) of which a high proportion (82.4%) were quadruple mutants (Pfdhfr N51I, C59R, S108N +Pfdhps A437G). Pfmrd1 N86Y, Y186F, and D1246Y - NFD mutant haplotypes were observed in 41.9% of isolates. The high prevalence of quadruple dhps/dhfr mutants indicates strong antifolate drug pressure from SP or other drugs (e.g., co-trimoxazole). Three samples contained PfK13 mutations, two synonymous (T478 and V666) and one non-synonymous (A578S), none of which have been associated with delayed clearance. This suggests that artemisinin remains efficacious in Zambia, however, the moderately high prevalence of approximately 40% Pfmdr1 NFD mutations calls for close monitoring of AL.publishedVersio

    Identification of rare microbial colonizers of plastic materials incubated in a coral reef environment

    Get PDF
    Plastic waste accumulation in marine environments has complex, unintended impacts on ecology that cross levels of community organization. To measure succession in polyolefin-colonizing marine bacterial communities, an in situ time-series experiment was conducted in the oligotrophic coastal waters of the Bermuda Platform. Our goals were to identify polyolefin colonizing taxa and isolate bacterial cultures for future studies of the biochemistry of microbe-plastic interactions. HDPE, LDPE, PP, and glass coupons were incubated in surface seawater for 11 weeks and sampled at two-week intervals. 16S rDNA sequencing and ATR-FTIR/HIM were used to assess biofilm community structure and chemical changes in polymer surfaces. The dominant colonizing taxa were previously reported cosmopolitan colonizers of surfaces in marine environments, which were highly similar among the different plastic types. However, significant differences in rare community composition were observed between plastic types, potentially indicating specific interactions based on surface chemistry. Unexpectedly, a major transition in community composition occurred in all material treatments between days 42 and 56 (p < 0.01). Before the transition, Alteromonadaceae, Marinomonadaceae, Saccharospirillaceae, Vibrionaceae, Thalassospiraceae, and Flavobacteriaceae were the dominant colonizers. Following the transition, the relative abundance of these taxa declined, while Hyphomonadaceae, Rhodobacteraceae and Saprospiraceae increased. Over the course of the incubation, 8,641 colonizing taxa were observed, of which 25 were significantly enriched on specific polyolefins. Seven enriched taxa from families known to include hydrocarbon degraders (Hyphomonadaceae, Parvularculaceae and Rhodobacteraceae) and one n-alkane degrader (Ketobacter sp.). The ASVs that exhibited associations with specific polyolefins are targets of ongoing investigations aimed at retrieving plastic-degrading microbes in culture

    Identification and Functional Validation of the Novel Antimalarial Resistance Locus PF10_0355 in Plasmodium falciparum

    Get PDF
    The Plasmodium falciparum parasite's ability to adapt to environmental pressures, such as the human immune system and antimalarial drugs, makes malaria an enduring burden to public health. Understanding the genetic basis of these adaptations is critical to intervening successfully against malaria. To that end, we created a high-density genotyping array that assays over 17,000 single nucleotide polymorphisms (~1 SNP/kb), and applied it to 57 culture-adapted parasites from three continents. We characterized genome-wide genetic diversity within and between populations and identified numerous loci with signals of natural selection, suggesting their role in recent adaptation. In addition, we performed a genome-wide association study (GWAS), searching for loci correlated with resistance to thirteen antimalarials; we detected both known and novel resistance loci, including a new halofantrine resistance locus, PF10_0355. Through functional testing we demonstrated that PF10_0355 overexpression decreases sensitivity to halofantrine, mefloquine, and lumefantrine, but not to structurally unrelated antimalarials, and that increased gene copy number mediates resistance. Our GWAS and follow-on functional validation demonstrate the potential of genome-wide studies to elucidate functionally important loci in the malaria parasite genome.Bill & Melinda Gates FoundationEllison Medical FoundationExxon Mobil FoundationFogarty International CenterNational Institute of Allergy and Infectious Diseases (U.S.)Burroughs Wellcome FundDavid & Lucile Packard FoundationNational Science Foundation (U.S.). Graduate Research Fellowship Progra

    Changes in drug sensitivity and anti-malarial drug resistance mutations over time among Plasmodium falciparum parasites in Senegal

    Get PDF
    Background: Malaria treatment efforts are hindered by the rapid emergence and spread of drug resistant parasites. Simple assays to monitor parasite drug response in direct patient samples (ex vivo) can detect drug resistance before it becomes clinically apparent, and can inform changes in treatment policy to prevent the spread of resistance. Methods: Parasite drug responses to amodiaquine, artemisinin, chloroquine and mefloquine were tested in approximately 400 Plasmodium falciparum malaria infections in Thiès, Senegal between 2008 and 2011 using a DAPI-based ex vivo drug resistance assay. Drug resistance-associated mutations were also genotyped in pfcrt and pfmdr1. Results: Parasite drug responses changed between 2008 and 2011, as parasites became less sensitive to amodiaquine, artemisinin and chloroquine over time. The prevalence of known resistance-associated mutations also changed over time. Decreased amodiaquine sensitivity was associated with sustained, highly prevalent mutations in pfcrt, and one mutation in pfmdr1 – Y184F – was associated with decreased parasite sensitivity to artemisinin. Conclusions: Directly measuring ex vivo parasite drug response and resistance mutation genotyping over time are useful tools for monitoring parasite drug responses in field samples. Furthermore, these data suggest that the use of amodiaquine and artemisinin derivatives in combination therapies is selecting for increased drug tolerance within this population

    An Eight-Week Trial Investigating the Efficacy and Tolerability of Atorvastatin for Children and Adolescents With Heterozygous Familial Hypercholesterolemia

    Get PDF
    This study aimed to assess the efficacy and tolerability of atorvastatin in Tanner stage (TS) 1 patients ages 6 to 10 years and TS ≥2 patients ages 10 to <18 years with genetically confirmed heterozygous familial hypercholesterolemia (HeFH) and a low density lipoprotein cholesterol (LDL-C) level of 4 mmol/l (155 mg/dl) or higher. In this open-label, 8-week study, 15 TS 1 children were treated initially with atorvastatin 5 mg/day and 24 TS ≥2 children with 10 mg/day. Doses were doubled at week 4 if the LDL-C target (<3.35 mmol/l [130 mg/dl]) was not achieved. The efficacy variables were the percentage change from baseline in LDL-C, total cholesterol (TC), triglycerides (TG), high density lipoprotein cholesterol (HDL-C), very low density lipoprotein cholesterol (VLDL-C), and apolipoprotein (Apo) A-I and Apo B. Safety evaluations included clinical monitoring, subject-reported adverse events (AEs), vital signs, and clinical laboratory tests. The mean values for LDL-C, TC, VLDL-C, and Apo B decreased by week 2 among all TS 1 and TS ≥2 patients, whereas TG, HDL-C, and Apo A-I varied considerably from week to week. After 8 weeks, the mean reduction in LDL-C was −40.7% ± 8.4 for the TS 1 children and −39.7% ± 10.3 for the TS ≥2 children. For the TS 1 patients, the mean reductions were −34.1% ± 6.9 for TC and −6.0% ± 32.1 for TG. The corresponding changes for the TS ≥2 patients were −35.6% ± 9.5 for TC and −21.1% ± 29.7 for TG. Four patients experienced mild to moderate treatment-related AEs. No serious AEs or discontinuations were reported. Overall, no difference in safety or tolerability was observed between the younger and older cohorts. Across the range of exposures after atorvastatin 5 to 10 mg (TS 1) or atorvastatin 10 to 20 mg (TS ≥2) doses for 8 weeks, clinically meaningful reductions in LDL-C, TC, VLDL-C, and Apo were observed with atorvastatin in pediatric patients who had HeFH. Atorvastatin also was well tolerated in this population

    A global compilation of coccolithophore calcification rates

    Get PDF
    The biological production of calcium carbonate (CaCO3), a process termed calcification, is a key term in the marine carbon cycle. A major planktonic group responsible for such pelagic CaCO3 production (CP) is the coccolithophores, single-celled haptophytes that inhabit the euphotic zone of the ocean. Satellite-based estimates of areal CP are limited to surface waters and open-ocean areas, with current algorithms utilising the unique optical properties of the cosmopolitan bloom-forming species Emiliania huxleyi, whereas little understanding of deep-water ecology, optical properties or environmental responses by species other than E. huxleyi is currently available to parameterise algorithms or models. To aid future areal estimations and validate future modelling efforts we have constructed a database of 2765 CP measurements, the majority of which were measured using 12 to 24 h incorporation of radioactive carbon (14C) into acid-labile inorganic carbon (CaCO3). We present data collated from over 30 studies covering the period from 1991 to 2015, sampling the Atlantic, Pacific, Indian, Arctic and Southern oceans. Globally, CP in surface waters ( < 20 m) ranged from 0.01 to 8398 µmol C m−3 d−1 (with a geometric mean of 16.1 µmol C m−3 d−1). An integral value for the upper euphotic zone (herein surface to the depth of 1 % surface irradiance) ranged from  < 0.1 to 6 mmol C m−2 d−1 (geometric mean 1.19 mmol C m−2 d−1). The full database is available for download from PANGAEA at https://doi.org/10.1594/PANGAEA.888182
    corecore