1,703 research outputs found

    Terra incognita—cerebellar contributions to neuropsychiatric and cognitive dysfunction in behavioral variant frontotemporal dementia

    Get PDF
    Although converging evidence has positioned the human cerebellum as an important relay for intact cognitive and neuropsychiatric processing, changes in this large structure remain mostly overlooked in behavioral variant frontotemporal dementia (bvFTD), a disease which is characterized by cognitive and neuropsychiatric deficits. The present study assessed whether degeneration in specific cerebellar subregions associate with indices of cognition and neuropsychiatric performance in bvFTD. Our results demonstrate a relationship between cognitive and neuropsychiatric decline across various domains of memory, language, emotion, executive, visuospatial function, and motivation and the degree of gray matter degeneration in cerebellar lobules V–VII. Most notably, bilateral cerebellar lobule VII and the posterior vermis emerged as distinct for memory processes, the right cerebellar hemisphere underpinned emotion, and the posterior vermis was highlighted in language dysfunction in bvFTD. Based on cortico-cerebellar connectivity maps, these findings in the cerebellum are consistent with the neural connections with the cortices involved in these domains in patients with bvFTD. Overall, the present study underscores the significance of cortical-cerebellar networks associated with cognition and neuropsychiatric dysfunction in bvFTD

    The pathogenesis of cingulate atrophy in behavioral variant frontotemporal dementia and Alzheimer’s disease

    Get PDF
    BACKGROUND: Early atrophy of the cingulate cortex is a feature of both behavioral variant frontotemporal dementia (bvFTD) and Alzheimer’s disease (AD), with degeneration of the anterior cingulate region increasingly recognized as a strong predictor of bvFTD. The total number of neurons in this region, rather than the density of neurons, is associated with mood disturbance in other dementias, although there are no data on the extent and magnitude of neuronal loss in patients with bvFTD. While the density of small populations of neurons in this region has been assessed, it is unlikely that the degree of atrophy of the cingulate cortex seen in bvFTD can be explained by the loss of these subpopulations. This suggests that there is more generalized degeneration of neurons in this region in bvFTD. The present study assesses total neuronal number, as well as characteristic pathologies, in the anterior and posterior cingulate cortices of pathologically confirmed bvFTD (N = 11) and AD (N = 9) patients compared with age-matched controls (N = 14). The bvFTD cohort comprised 5 cases with tau pathology (Pick’s disease), and 6 with TDP-43 pathology. RESULTS: At postmortem, atrophy was detected in the anterior and posterior cingulate cortices of bvFTD cases, but only in the posterior cingulate cortex of AD cases. As predicted, there was a significant reduction in both the density and total number of neurons in the anterior but not the posterior cingulate cortex of bvFTD cases with the opposite observed for the AD cases. Importantly, neuronal loss in the anterior cingulate cortex was only observed in cases with tau pathology. CONCLUSIONS: This study confirms significant neuronal loss in the posterior but not anterior cingulate cortex in AD, and demonstrates that significant neuron loss in bvFTD occurs only in the anterior cingulate cortex but only in cases with tau pathology compared with cases with TDP pathology. We propose that significant neurodegeneration in the anterior cingulate cortex may be useful in differentiating the pathological subtypes in vivo

    Functional Specialization of Cellulose Synthase Isoforms in a Moss Shows Parallels with Seed Plants

    Get PDF
    The secondary cell walls of tracheary elements and fibers are rich in cellulose microfibrils that are helically oriented and laterally aggregated. Support cells within the leaf midribs of mosses deposit cellulose-rich secondary cell walls, but their biosynthesis and microfibril organization have not been examined. Although the Cellulose Synthase (CESA) gene families of mosses and seed plants diversified independently, CESA knockout analysis in the moss Physcomitrella patens revealed parallels with Arabidopsis (Arabidopsis thaliana) in CESA functional specialization, with roles for both subfunctionalization and neofunctionalization. The similarities include regulatory uncoupling of the CESAs that synthesize primary and secondary cell walls, a requirement for two or more functionally distinct CESA isoforms for secondary cell wall synthesis, interchangeability of some primary and secondary CESAs, and some CESA redundancy. The cellulose-deficient midribs of ppcesa3/8 knockouts provided negative controls for the structural characterization of stereid secondary cell walls in wild type P. patens. Sum frequency generation spectra collected from midribs were consistent with cellulose microfibril aggregation, and polarization microscopy revealed helical microfibril orientation only in wild type leaves. Thus, stereid secondary walls are structurally distinct from primary cell walls, and they share structural characteristics with the secondary walls of tracheary elements and fibers. We propose a mechanism for the convergent evolution of secondary walls in which the deposition of aggregated and helically oriented microfibrils is coupled to rapid and highly localized cellulose synthesis enabled by regulatory uncoupling from primary wall synthesis

    Comparing aging and fitness effects on brain anatomy

    Get PDF
    Recent studies suggest that cardiorespiratory fitness (CRF) mitigates the brain’s atrophy typically associated with aging, via a variety of beneficial mechanisms. One could argue that if CRF is generally counteracting the negative effects of aging, the same regions that display the greatest age-related volumetric loss should also show the largest beneficial effects of fitness. To test this hypothesis we examined structural MRI data from 54 healthy older adults (ages 55–87), to determine the overlap, across brain regions, of the profiles of age and fitness effects. Results showed that lower fitness and older age are associated with atrophy in several brain regions, replicating past studies. However, when the profiles of age and fitness effects were compared using a number of statistical approaches, the effects were not entirely overlapping. Interestingly, some of the regions that were most influenced by age were among those not influenced by fitness. Presumably, the age-related atrophy occurring in these regions is due to factors that are more impervious to the beneficial effects of fitness. Possible mechanisms supporting regional heterogeneity may include differential involvement in motor function, the presence of adult neurogenesis, and differential sensitivity to cerebrovascular, neurotrophic and metabolic factors

    TDP-43 in the hypoglossal nucleus identifies amyotrophic lateral sclerosis in behavioral variant frontotemporal dementia

    Get PDF
    The hypoglossal nucleus was recently identified as a key brain region in which the presence of TDP-43 pathology could accurately discriminate TDP-43 proteinopathy cases with clinical amyotrophic lateral sclerosis (ALS). The objective of the present study was to assess the hypoglossal nucleus in behavioral variant frontotemporal dementia (bvFTD), and determine whether TDP-43 in this region is associated with clinical ALS. Twenty-nine cases with neuropathological FTLD-TDP and clinical bvFTD that had not been previously assessed for hypoglossal TDP-43 pathology were included in this study. Of these 29 cases, 41% (n = 12) had a dual diagnosis of bvFTD-ALS at presentation, all 100% (n = 12) of which demonstrated hypoglossal TDP-43 pathology. Of the 59% (n = 17) cohort that presented with pure bvFTD, 35% (n = 6) were identified with hypoglossal TDP-43 pathology. Review of the case files of all pure bvFTD cases revealed evidence of possible or probable ALS in 5 of the 6 hypoglossal-positive cases (83%) towards the end of disease, and this was absent from all cases without such pathology. In conclusion, the present study validates grading the presence of TDP-43 in the hypoglossal nucleus for the pathological identification of bvFTD cases with clinical ALS, and extends this to include the identification of cases with possible ALS at end-stage

    Home interventions and light therapy for treatment of vitiligo (HI-Light Vitiligo Trial): study protocol for a randomized controlled trial

    Get PDF
    Vitiligo is a condition resulting in white patches on the skin. People with vitiligo can suffer from low self-esteem, psychological disturbance and diminished quality of life. Vitiligo is often poorly managed, partly due to lack of high quality evidence to inform clinical care. We describe here a large, independent, randomised controlled trial (RCT) assessing the comparative effectiveness of potent topical corticosteroid, home-based hand-held narrowband ultraviolet B-light (NB-UVB) or combination of the two, for the management of vitiligo. Methods and Analysis The HI-Light Vitiligo Trial is a multi-centre, three-arm, parallel group, pragmatic, placebo-controlled RCT. 516 adults and children with actively spreading, but limited, vitiligo are randomised (1:1:1) to one of three groups: mometasone furoate 0.1% ointment plus dummy NB-UVB light, vehicle ointment plus NB-UVB light, or mometasone furoate 0.1% ointment plus NB-UVB light. Treatment of up to three patches of vitiligo is continued for up to 9 months with clinic visits at baseline, 3, 6 and 9 months and four post treatment questionnaires. The HI-Light Vitiligo Trial assesses outcomes included in the vitiligo core outcome set and places emphasis on participants’ views of treatment success. The primary outcome is proportion of participants achieving treatment success (patient-rated Vitiligo Noticeability Scale) for a target patch of vitiligo at 9 months with further independent blinded assessment using digital images of the target lesion before and after treatment. Secondary outcomes include time to onset of treatment response, treatment success by body region, percentage repigmentation, quality of life, time-burden of treatment, maintenance of response, safety, and within-trial cost effectiveness. Ethics and Dissemination Approvals were granted by East Midlands–Derby Research Ethics Committee (14/EM/1173) and the MHRA (EudraCT 2014-003473-42). The trial was registered 8th January 2015 ISRCTN (17160087). Results will be published in full as open access in the NIHR Journal library and elsewhere

    Cerebellar Integrity in the Amyotrophic Lateral Sclerosis - Frontotemporal Dementia Continuum

    Get PDF
    Amyotrophic lateral sclerosis (ALS) and behavioural variant frontotemporal dementia (bvFTD) are multisystem neurodegenerative disorders that manifest overlapping cognitive, neuropsychiatric and motor features. The cerebellum has long been known to be crucial for intact motor function although emerging evidence over the past decade has attributed cognitive and neuropsychiatric processes to this structure. The current study set out i) to establish the integrity of cerebellar subregions in the amyotrophic lateral sclerosis-behavioural variant frontotemporal dementia spectrum (ALS-bvFTD) and ii) determine whether specific cerebellar atrophy regions are associated with cognitive, neuropsychiatric and motor symptoms in the patients. Seventy-eight patients diagnosed with ALS, ALS-bvFTD, behavioural variant frontotemporal dementia (bvFTD), most without C9ORF72 gene abnormalities, and healthy controls were investigated. Participants underwent cognitive, neuropsychiatric and functional evaluation as well as structural imaging using voxel-based morphometry (VBM) to examine the grey matter subregions of the cerebellar lobules, vermis and crus. VBM analyses revealed: i) significant grey matter atrophy in the cerebellum across the whole ALS-bvFTD continuum; ii) atrophy predominantly of the superior cerebellum and crus in bvFTD patients, atrophy of the inferior cerebellum and vermis in ALS patients, while ALS-bvFTD patients had both patterns of atrophy. Post-hoc covariance analyses revealed that cognitive and neuropsychiatric symptoms were particularly associated with atrophy of the crus and superior lobule, while motor symptoms were more associated with atrophy of the inferior lobules. Taken together, these findings indicate an important role of the cerebellum in the ALS-bvFTD disease spectrum, with all three clinical phenotypes demonstrating specific patterns of subregional atrophy that associated with different symptomology

    Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of Nsp14 RNA cap methyltransferase

    Get PDF
    The COVID-19 pandemic has presented itself as one of the most critical public health challenges of the century, with SARS-CoV-2 being the third member of the Coronaviridae family to cause a fatal disease in humans. There is currently only one antiviral compound, remdesivir, that can be used for the treatment of COVID-19. To identify additional potential therapeutics, we investigated the enzymatic proteins encoded in the SARS-CoV-2 genome. In this study, we focussed on the viral RNA cap methyltransferases, which play key roles in enabling viral protein translation and facilitating viral escape from the immune system. We expressed and purified both the guanine-N7 methyltransferase nsp14, and the nsp16 2′-O-methyltransferase with its activating cofactor, nsp10. We performed an in vitro high-throughput screen for inhibitors of nsp14 using a custom compound library of over 5000 pharmaceutical compounds that have previously been characterised in either clinical or basic research. We identified four compounds as potential inhibitors of nsp14, all of which also showed antiviral capacity in a cell-based model of SARS-CoV-2 infection. Three of the four compounds also exhibited synergistic effects on viral replication with remdesivir
    corecore