22 research outputs found
Climate Decision-Making
Climate change decision-making has emerged in recent decades as an area of research and practice, expanding on an earlier focus on climate policy. Defined as the study of decisions relevant for climate change, it draws on developments in decision science, particularly advances in the study of cognitive and deliberative processes in individuals and organizations. The effects of climate, economic, social, and other framings on decision-making have been studied, often showing that nonclimate frames can be as effective as, or more effective than, climate frames in promoting decision-making and action. The concept of urgency, linked to the ideas of climate crisis and climate emergency, has taken on importance in recent years. Research on climate decision-making has influenced numerous areas of climate action, including nudges and other behavioral interventions, corporate social responsibility, and Indigenous decision-making. Areas of transformational change, such as strategic retreat in the face of sea-level rise, are emerging
Recommended from our members
A Perspective on Cell Therapy and Cancer Vaccine in Biliary Tract Cancers (BTCs).
Biliary tract cancer (BTC) is a rare, but aggressive, disease that comprises of gallbladder carcinoma, intrahepatic cholangiocarcinoma and extrahepatic cholangiocarcinoma, with heterogeneous molecular profiles. Advanced disease has limited therapeutic options beyond first-line platinum-based chemotherapy. Immunotherapy has emerged as a viable option for many cancers with a similar unmet need. Therefore, we reviewed current understanding of the tumor immune microenvironment and recent advances in cellular immunotherapy and therapeutic cancer vaccines against BTC. We illustrated the efficacy of dendritic cell vaccination in one patient with advanced, chemorefractory, melanoma-associated antigen (MAGE)-positive gallbladder carcinoma, who was given multiple injections of an allogenic MAGE antigen-positive melanoma cell lysate (MCL)-based autologous dendritic cell vaccine combined with sequential anti-angiogenic therapy. This resulted in good radiological and tumor marker response and an overall survival of 3 years from diagnosis. We postulate the potential synergism of adding anti-angiogenic therapy, such as bevacizumab, to immunotherapy in BTC, as a rational scientific principle to positively modulate the tumor microenvironment to augment antitumor immunity
Recommended from our members
Patient-specific cancer genes contribute to recurrently perturbed pathways and establish therapeutic vulnerabilities in esophageal adenocarcinoma
Abstract: The identification of cancer-promoting genetic alterations is challenging particularly in highly unstable and heterogeneous cancers, such as esophageal adenocarcinoma (EAC). Here we describe a machine learning algorithm to identify cancer genes in individual patients considering all types of damaging alterations simultaneously. Analysing 261 EACs from the OCCAMS Consortium, we discover helper genes that, alongside well-known drivers, promote cancer. We confirm the robustness of our approach in 107 additional EACs. Unlike recurrent alterations of known drivers, these cancer helper genes are rare or patient-specific. However, they converge towards perturbations of well-known cancer processes. Recurrence of the same process perturbations, rather than individual genes, divides EACs into six clusters differing in their molecular and clinical features. Experimentally mimicking the alterations of predicted helper genes in cancer and pre-cancer cells validates their contribution to disease progression, while reverting their alterations reveals EAC acquired dependencies that can be exploited in therapy
Proceedings of Abstracts, School of Physics, Engineering and Computer Science Research Conference 2022
© 2022 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Plenary by Prof. Timothy Foat, ‘Indoor dispersion at Dstl and its recent application to COVID-19 transmission’ is © Crown copyright (2022), Dstl. This material is licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: [email protected] present proceedings record the abstracts submitted and accepted for presentation at SPECS 2022, the second edition of the School of Physics, Engineering and Computer Science Research Conference that took place online, the 12th April 2022
Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries
Abstract
Background
Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres.
Methods
This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries.
Results
In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia.
Conclusion
This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
Made By Singapore : a communication campaign to raise awareness and foster support for Singapore's fashion and beauty brands
This paper presents Made By Singapore, a communication campaign aimed at raising awareness and fostering support for local fashion and beauty brands among undergraduates aged 19 to 25 from the Nanyang Technological University (NTU). Throughout the course of the campaign, Made By Singapore had successful collaborations with a total of 15 local fashion and beauty brands. The campaign was spearheaded by the Made By Singapore Ambassador Programme which involved 30 student ambassadors; and was supplemented by both social media content and media outreach. The campaign achieved its informational, attitudinal and behavioural objectives. Most significantly, as a result of the campaign, 69.7% and 42.7% of the target audience surveyed made at least one purchase from a local fashion brand and local beauty brand respectively. This paper will cover the campaign’s research, development, implementation, limitations, future directions and recommendations. A full list of documents and research data can be found in the appendices.Bachelor of Communication Studie
Clinical Utility of the Portable Pressure-Measuring Device for Compression Garment Pressure Measurement on Hypertrophic Scars by Burn Injury during Compression Therapy
Compression therapy for burn scars can accelerate scar maturation and improve clinical symptoms (pruritus and pain). This study objectively verified the effect of pressure garment therapy in maintaining a therapeutic pressure range for hypertrophic scars. Sixty-five participants (aged 20~70 years) with partial- or full-thickness burns, Vancouver scar scale score of ≥4, and a hypertrophic scar of ≥4 cm × 4 cm were enrolled. Compression pressure was measured weekly using a portable pressure-monitoring device to regulate this pressure at 15~25 mmHg for 2 months. In the control group, the compression garment use duration and all other burn rehabilitation measures were identical except for compression monitoring. No significant difference was noted in the initial evaluations between the two groups (p > 0.05). The improvements in the amount of change in scar thickness (p = 0.03), erythema (p = 0.03), and sebum (p = 0.02) were significantly more in the pressure monitoring group than in the control group. No significant differences were noted in melanin levels, trans-epidermal water loss, or changes measured using the Cutometer® between the two groups. The efficacy of compression garment therapy for burn-related hypertrophic scars can be improved using a pressure-monitoring device to maintain the therapeutic range
Plasticity in Intrinsic Excitability of Hypothalamic Magnocellular Neurosecretory Neurons in Late-Pregnant and Lactating Rats
Oxytocin and vasopressin secretion from the posterior pituitary gland are required for normal pregnancy and lactation. Oxytocin secretion is relatively low and constant under basal conditions but becomes pulsatile during birth and lactation to stimulate episodic contraction of the uterus for delivery of the fetus and milk ejection during suckling. Vasopressin secretion is maintained in pregnancy and lactation despite reduced osmolality (the principal stimulus for vasopressin secretion) to increase water retention to cope with the cardiovascular demands of pregnancy and lactation. Oxytocin and vasopressin secretion are determined by the action potential (spike) firing of magnocellular neurosecretory neurons of the hypothalamic supraoptic and paraventricular nuclei. In addition to synaptic input activity, spike firing depends on intrinsic excitability conferred by the suite of channels expressed by the neurons. Therefore, we analysed oxytocin and vasopressin neuron activity in anaesthetised non-pregnant, late-pregnant, and lactating rats to test the hypothesis that intrinsic excitability of oxytocin and vasopressin neurons is increased in late pregnancy and lactation to promote oxytocin and vasopressin secretion required for successful pregnancy and lactation. Hazard analysis of spike firing revealed a higher incidence of post-spike hyperexcitability immediately following each spike in oxytocin neurons, but not in vasopressin neurons, in late pregnancy and lactation, which is expected to facilitate high frequency firing during bursts. Despite lower osmolality in late-pregnant and lactating rats, vasopressin neuron activity was not different between non-pregnant, late-pregnant, and lactating rats, and blockade of osmosensitive ΔN-TRPV1 channels inhibited vasopressin neurons to a similar extent in non-pregnant, late-pregnant, and lactating rats. Furthermore, supraoptic nucleus ΔN-TRPV1 mRNA expression was not different between non-pregnant and late-pregnant rats, suggesting that sustained activity of ΔN-TRPV1 channels might maintain vasopressin neuron activity to increase water retention during pregnancy and lactation
In-situ scalable manufacturing of Epstein-Barr virus-specific T-cells using bioreactor with an expandable culture area (BECA)
The ex-vivo expansion of antigen-specific T-cells for adoptive T-cell immunotherapy requires active interaction between T-cells and antigen-presenting cells therefore culture density and environment become important variables to control. Maintenance of culture density in a static environment is traditionally performed by the expansion of the culture area through splitting of culture from a single vessel into multiple vessels-a highly laborious process. This study aims to validate the use and efficacy of a novel bioreactor, bioreactor with an expandable culture area-dual chamber (BECA-D), that was designed and developed with a cell chamber with expandable culture area (12-108 cm2) and a separate media chamber to allow for in-situ scaling of culture with maintenance of optimum culture density and improved nutrient and gas exchange while minimizing disturbance to the culture. The performance of BECA-D in the culture of Epstein-Barr virus-specific T-cells (EBVSTs) was compared to the 24-well plate. BECA-D had 0.9-9.7 times the average culture yield of the 24-well plates across 5 donor sets. BECA-D was able to maintain the culture environment with relatively stable glucose and lactate levels as the culture expanded. This study concludes that BECA-D can support the culture of ex-vivo EBVSTs with lower manufacturing labour and time requirements compared to the use of the 24-well plate. BECA-D and its adaptation into a closed system with an automated platform (currently being developed) provides cell therapy manufacturers and developers with a closed scale-out solution to producing adoptive cell therapy for clinical use.Agency for Science, Technology and Research (A*STAR)Published versionThe authors thank Agency for Science Technology and Research (A*STAR), Singapore and National Cancer Centre Singapore for supporting this study and funding support given by A*STAR Industry Alignment Fund— Pre-Positioning Programme (Grant Number: H18/01/a0/022)
A Perspective on Cell Therapy and Cancer Vaccine in Biliary Tract Cancers (BTCs)
Biliary tract cancer (BTC) is a rare, but aggressive, disease that comprises of gallbladder carcinoma, intrahepatic cholangiocarcinoma and extrahepatic cholangiocarcinoma, with heterogeneous molecular profiles. Advanced disease has limited therapeutic options beyond first-line platinum-based chemotherapy. Immunotherapy has emerged as a viable option for many cancers with a similar unmet need. Therefore, we reviewed current understanding of the tumor immune microenvironment and recent advances in cellular immunotherapy and therapeutic cancer vaccines against BTC. We illustrated the efficacy of dendritic cell vaccination in one patient with advanced, chemorefractory, melanoma-associated antigen (MAGE)-positive gallbladder carcinoma, who was given multiple injections of an allogenic MAGE antigen-positive melanoma cell lysate (MCL)-based autologous dendritic cell vaccine combined with sequential anti-angiogenic therapy. This resulted in good radiological and tumor marker response and an overall survival of 3 years from diagnosis. We postulate the potential synergism of adding anti-angiogenic therapy, such as bevacizumab, to immunotherapy in BTC, as a rational scientific principle to positively modulate the tumor microenvironment to augment antitumor immunity